
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier

Anomaly Detection in Graphs of Bank
Transactions for Anti Money Laundering
Applications
BOGDAN DUMITRESCU1, (Member, IEEE), ANDRA BĂLTOIU2, AND ŞTEFANIA BUDULAN3
1University Politehnica of Bucharest, Department of Automatic Control and Computers, 313 Spl. Independenţei, Bucharest 060042, Romania (e-mail:
bogdan.dumitrescu@upb.ro)
2University Politehnica of Bucharest, Department of Automatic Control and Computers, 313 Spl. Independenţei, Bucharest 060042, Romania (e-mail:
andra.baltoiu@upb.ro)
3Tremend Software Consulting, 165 Splaiul Unirii, Timpuri Noi Square, TN Office 2 building, Bucharest 030134, Romania (e-mail:
stefania.budulan@tremend.com)

Corresponding author: Bogdan Dumitrescu (e-mail: bogdan.dumitrescu@upb.ro).

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number
PN-III-P2-2.1-PED-2019-3248 (Graphomaly), within PNCDI III.

ABSTRACT Our aim in this paper is to detect bank clients involved in suspicious activities related to
money laundering, using the graph of transactions of the bank. Although we have a labeled real dataset,
our target is not only to obtain relevant results on it, but also on random graphs in which typical anomaly
patterns have been injected. So, we want simultanously adequacy to the real data and robustness. Our method
is based on designing new features; the most important are those resulting from the reduced egonet, which
is the subgraph that remains from an egonet after eliminating the nodes connected with a single edge to the
center; another feature is built by appealing to random walks and serves as indicator of circular flows. Our
features are added to usual egonet features and a general anomaly detection algorithm, in our case Isolation
Forest, serves to detect the anomalies. Experiments on the real data and a comprehensive set of synthetic
data show that our approach is adequate, robust and better than some previous methods.

INDEX TERMS anomaly detection, bank transactions, money laundering, graphs, egonet, random walk

I. INTRODUCTION

Money laundering is an activity through which illegally
obtained money are introduced and circulated as apparently
legitimate transactions, such that their source is difficult
to track. The amount of money subject to laundering has
been estimated at between 2% and 5% of the global GDP,
although, as argued in [1], a significant part of this amount is
hard to trace and does not even enter the banking system. In
any case, only a very small amount of the laundered money,
estimated at 1%, is seized. Since the stakes are so high, states
have institutions and banks have divisions dedicated to Anti
Money Launering (AML) activities.

There are many AML methods, our concern being only
in data analysis, specifically by looking at the graph repre-
sentation of bank transactions. Our angle is that of anomaly
detection (AD) in the graph, thus using a machine learning
approach.

A. THE PROBLEM

The input data is the transaction list of a bank during a certain
time window. A directed graph G = (V, E) is extracted from
the transaction list; the nodes (vertices) from V are accounts;
the edges from E represent transfers between two accounts;
the transferred sums are edges weights. There is a unique
edge (k, ℓ) ∈ E between nodes k, ℓ ∈ V , with only two
attributes: the total sum transferred from k to ℓ during the
time window, denoted skℓ, and the number of transactions,
nkℓ; the money amounts are converted to a single currency.
At least one of the two accounts involved in a transaction
is a client of that bank; the other can be a client of another
bank. When several accounts can be identified as belonging
to the same client, they are aggregated in a single node. The
purpose is to find anomalous nodes, in a broad AML sense.

This setup is a simplified view of the bank transactions,
ignoring some information that may be useful, like the cur-
rency, the exact time of the transaction, the modality in which
the transfer was ordered, the amount available in the source

VOLUME x, 2022 1

and/or destination accounts. However, it is highly informative
on the network of relations between accounts.

Most banks have rule-based warnings that point to sus-
picious transfers, based on regulations, experience and own
understanding of illegal financial activities. For example, a
large transfer to/from a fiscal paradise is a certain trigger for
further verification. Rule-based AML tools can be very effec-
tive in spotting isolated dubious transactions or even small
fraudulent networks, but may fail in face of an intricated
money laundering scheme.

The graph-based approach is not seen as a replacement of
the rule-based system, but as a complementary tool that can
detect more complex or new fraud schemes. We also note that
AML is more difficult for a single bank, due to the instrinsic
partial access to the operations of a criminal group.

B. OUR CONTRIBUTION
There are many methods for anomaly detection in graphs
and they cover many facets of the AML problem as posed
above. An overview will be presented in Section II. How-
ever, the AML task is simply too complex to be definitively
solved. Scarcity of public data contributes to the difficulty
of assessing which approaches and algorithms are the most
appropriate.

We propose a method shaped in a standard format. First,
we design and compute node features that capture relevant
information from the graph. Then, an AD algorithm is run on
the computed feature values to detect the abnormal nodes.

Specifically designed features have the advantage that
they can be based on direct insight on money laundering
schemes and can more easily be accepted by banking experts,
although machine learning algorithms still have an important
role. Graph features or statistical scores have been extracted
from graphs in several previous works, notably [2] (egonet
features), [3] (local connectivity features, like the shortest
distance between the endpoints of a transaction, or global
features like the page rank), [4] (features related to spec-
tral localization, community properties, node connectivity,
NetEMD [5] measures of the difference between an expected
network and the network at hand).

Our contribution consists of proposing new features re-
sulted from reduced egonets, i.e., egonets from which the
nodes connected with a single edge to the center are removed.
Their differences with respect to the egonets enhance the
peculiarities of fraud patterns, thus making easier the work
of AD methods in isolating the true anomalies. We also
introduce features derived from random walks, especially
related to the amount of money that return to a node through
a cycle.

We are in the good position of having access to real bank
transactions, labeled by AML specialists. However, since this
is still a partial view, our goal is to give graph anomaly
detection methods that are suited for this real dataset as well
as for random graphs in which typical fraud patterns were
injected. So, we simultaneously want adequacy to real data,
which are in limited supply due to the privacy constraints of

the banks, and robustness by addressing generic structures.
Like in [3], we aim to complement the existing systems
based on rules or analytics, not to replace them. Also, we
want not to excessively tune the methods to the specific of a
single bank, but to leave place for generality. Comprehensive
experiments show that our goal is attained in good measure.

C. CONTENT OF THE PAPER
Our paper is organized as follows. We start in Section II with
an overview of previous work, trying to outline the existing
main ideas. Section III describes the characteristics of our
datasets; understanding the data structures is central in graph
analysis, due to the complexity of the possible abnormal pat-
terns. Section III-A presents a real graph of transactions pro-
vided by a bank, with two levels of adnotations for suspicious
transactions. Synthetic data are the subject of Section III-B;
they consist of random graphs in which typical anomaly
patterns have been injected. Section IV presents the proposed
features, derived from reduced egonets (Section IV-A) and
random walks (Section IV-B). Section V gives the feature sets
computed for our data, on which anomaly detection methods
can be run. Section VI contains the results of our methods
and few well known ones, expressed especially in terms of
the true positive rate. Our methods offer a good mix of results
on real and synthetic data; the reduced egonet features appear
to be the most robust. We publish on our website the real data
and programs for generating the synthetic data, as well as the
Python implementation of our methods.

II. BACKGROUND AND RELATED WORK
Anomaly detection in graphs is a very active topic, with many
applications, most of the research taking place in the latest ten
years. We enumerate here the most important lines of attack,
many of them directly related to AML. We also describe the
position of our approach with respect to them.

A. DETECTING KNOWN PATTERNS
Money laundering often generates subgraphs with special
topologies. Several such patterns are illustrated in Figure 1.
Even though the real instances of these patterns have not
exactly the shown ideal form, detection methods inspired by
them have good behavior. Although indirectly, the special
subgraphs discussed below have inspired our feature design,
see especially the examples from Section IV-A.

• Nodes with high out or in traffic, named volcanoes and
blackholes in [6], or stars in other works, may indicate
the beginning or the end of a flow of money with
dubious source. Flowscope [7] targets a more evolved
scheme, where money flows from a few sources to a
few destinations through middle accounts that serve
only as buffers, as illustrated in Figure 2. This pattern
corresponds to what in the AML community is known
as the placement-layering-integration model [8], with
each activity being carried out by the source, middle and
destination nodes respectively. Intermediate accounts
are also considered in [9], which uses a tensor approach

2 VOLUME x, 2022

to modelling tripartrite patterns relevant to money laud-
ering.

• A cycle is a classic fraud pattern, especially if the
amount transferred over it is nearly constant; in [10],
cycles with various lengths are detected in real time,
using a hot point index to speed up the search.

• Cliques or dense subgraphs may show attempts to mask
the money flow and make analysis difficult. Despite the
impression that cliques should be conspicuous, it was
proved in [11] that finding the densest subgraph of a
certain size is NP-hard. OddBall [2] is a very success-
ful method with this purpose, using simple statistical
measures. In [12] high density subgraphs are found by
efficiently solving a nonconvex quadratic programming
problem. A spectral perspective is considered in [13],
where the adjacency characteristics of dense subgraphs
are analyzed.

• All the above patterns and others (for example, heavy
paths, which represent successive transfers of a large
sum between several accounts) are targeted in [4], where
more than one hundred graph related statistics are pro-
posed, directly giving anomaly scores by their depar-
ture from normality, where "normal" behavior (the null
model) is ingeniously sampled from the whole graph.
CoDetect [14] targets also several possibly fraudulent
patterns (outlier point, merge, ring) and models the
weighted graph similarity matrix and the node feature
matrix with low-rank decompositions.

• Although with no application to AML, but mostly for
the discovery of fake reviews, FRAUDAR [15] detects
dense subgraphs in bipartite graphs optimizing a suspi-
ciousness function. EigenPulse [16] deals with a similar
problem, but on streaming graphs.

B. STATISTICAL APPROACHES

Instead of searching (almost) fixed patterns, one may exam-
ine how normal nodes and their neighborhoods are, based on
the distribution of certain relevant features or scores. Some of
the approaches above may be seen as such, for example [2],
which is based on deviations from a power-law distribution,
and [4]. In [17], a normality measure is introduced to charac-
terize neighborhoods of attributed networks. Earlier, in [18],
a greedy beam search and the Minimum Description Length
principle were used starting from the idea that normal graph
structures are those leading to best compression. In [3], de-
viation from normality is defined by transactions outside the
local community of a node, using easy-to-compute features
that place or not a transaction within such a community; the
main purpose is real-time card fraud detection; only amount
and time stamp are used as edge attributes. Indications of
anomalous activity can also be found in the evolution of
the graph in time. Dynamic features derived from this time-
series approach can therefore also be considered, as done in
[19], in order to distinguish bursts of activity from typical
transaction regularity. MonLAD [20] considers a series of

money laudering traits that describe network activity specific
to fraudulent schemes by also taking temporal patterns into
account. For example, star-like patterns are considered sus-
pect if, in addition, the time between transactions is short.
The authors define statistical features that summarize account
activity based on these fraudulency assumptions and set up
corresponding thresholds with respect to generalized Pareto
distributions. The thresholds are subsequently used to com-
pute anomaly scores and label transactions.

In a general sense, since we compute features, our ap-
proach has a statistical flavor. However, we do not explicitly
compute statistical scores, but leave the task of discovering
the anomalies in the ensemble of features to general purpose
AD methods.

C. LEARNING APPROACHES
More abstract approaches are based on learning using a
global objective function. Our method has no resemblance
with them.

A first example is that of building embeddings. Low-
dimensional real vectors are associated with nodes, attempt-
ing to associate relations in the graph with distances be-
tween the vectors. For example, in node2vec [21], neigh-
borhoods (sampled with random walks) are preserved in the
low-dimensional space; anomaly detection is explicitly the
goal in [22], with emphasis on nodes that are connected
with many communities. Structural deep network embedding
(SDNE) [23] preserves distances also in second-order prox-
imities. Netwalk [24] proposed clique embedding via a deep
autoencoder neural network, minimizing pairwise distance
among vertices on random walks while encouraging sparsity;
anomalies are nodes not belonging to clusters (have large
distance to cluster centers).

Other learning approaches optimize a global objective
function that characterizes normality or suspiciousness in a
broad sense. Usually the optimization structure belongs to
deep learning and the form is that of an autoencoder. The
result consists of scores that are associated to nodes. For
example, in [25], [26], the input is an attributed network,
and the autoencoder works with both graph structure and
node attributes. In [27], two decoders with different purposes,
generative and contrastive, are used on the output of a single
encoder to provide anomaly scores. Specifically oriented to
financial fraud detection is [28], proposing deep learning
using stacked auto-encoders and restricted Boltzmann ma-
chines.

D. OTHER VIEWPOINTS
Besides the approaches described above for fraud detection
in financial applications, there are others that do not fit our
classification. For example, social network statistics are used
in [29] to assess risk profiles of the clients of a factoring
company.

Our view of the previous work is certainly incomplete
and subjective. A more general picture can be found in
the review articles [30]–[35], the latter on methods using

VOLUME x, 2022 3

FIGURE 1: Anomaly structures: clique (top left), clique directed (top middle), clique random (top right), ring (bottom left),
star (bottom middle), star directed (bottom left).

FIGURE 2: Tripartrite graph.

deep learning. A related field is that of network anomaly
detection [36], [37], where the purpose is to find malicious
actions over a computer network; although information flow
is different from that of bank transfers, graph methods can
be useful. An example is [38], where sudden changes in
dynamic graphs are detected via changes in PageRank scores,
with application to network intrusion detection.

Another classification may be made based on the issue of
anomaly detection itself. Most of the methods propose scores
that can be used directly to decide which nodes are more
likely to be the outliers. Other methods, including ours and
those producing embeddings, only build a set of features,
which are then fed to an anomaly detection algorithm, like
those from PyOD [39].

An important issue is that of complexity and scalability,

since graphs involved in AML operations are usually large.
Here the spectrum is quite large, from algorithms that work
in real time to others that need huge resources and are imprac-
tical for very large graphs, with millions and even hundreds
of thousands nodes. Our method is placed somewhere in the
middle, in the sense that it can be applied to large graphs, but
does not operate in real time.

III. DATASETS
Finding anomalies in a transaction graph entails having ac-
cess to (ideally large) datasets. However, most of the in-
dustries for which this analysis would be a great fit, such
as financial services, refrain from publicating datasets for
the research community. Besides the information that can
be anonymized, such as the source and destination IDs,
other important features may be more difficult to conceal.
Another impediment when dealing with real data comes
from the transactions that are made to/from the outside
environment, where we have little to no information about
their corresponding destination/source. The alternative is to
generate synthetic datasets, with the ideal of maintaining a
natural anomalies-to-regular entries ratio, as well as inserting
anomalies that would be found in a real-life scenario.

Credit Card Fraud Detection dataset [40], one of the few
real-world datasets, contains transactions made by European
cardholders, through their credit cards in 2013. This dataset
contains 284,807 transactions out of which 492 transactions
(0.173%) were fraudulent. Besides the amount and time
information, the other public numerical values are obtained
via PCA. In [3] real banking data also oriented to card fraud
are used, but not made public.

IEEE-CIS Fraud Detection dataset [41] was collected

4 VOLUME x, 2022

and published by IEEE Computational Intelligence Society
(IEEE-CIS) in colaboration with Vesta company, contains
real e-commerce transactions with a little over 590K in-
stances, of which 3.5% are fraudulent. Even though several
anomaly detection methods can be applied here, a transaction
graph cannot be associated with this type of data, given that
the transactional interaction between users is not captured.

The Bitcoin blockchain is public and large, but the number
of accounts is also very large and it is very difficult to group
accounts by owner. Some AML advances are presented in
[42].

Going now to synthetic datasets, PaySim [43] is a sim-
ulator that can generate datasets of mobile money transac-
tions that are similar to real transactions, using agent based
modeling. Frauds are modeled according to different scenar-
ios by setting some parameters outside the normal interval.
BankSim [44] is a similar solution for constructing bank
transactions datasets and is suited for simulating payment
frauds such as card theft or unauthorized internet purchases;
however, it has no money laundering models. An example
dataset has been made public [45], however it does not
include all supported fraud types and further development
has shifted to commercial settings [46]. A similar commercial
agent-based solution is [47].

In this landscape where data for testing AML algorithms
are so scarce, we have the advantage of a real dataset,
presented next.

A. LIBRA BANK DATASET
Libra Internet Bank, a Romanian bank, provided a complete
list of transactions over three months1, from which we have
extracted the graph corresponding to transfers between ac-
counts.

It is worth mentioning that several steps of preprocessing
have been performed, before extracting the transaction graph.
These steps involved the alignment of labeled transactions
with the transaction dataset, merging possibly duplicated in-
formation when both the originator and beneficiary entities of
the transaction had accounts within the bank, or leaving aside
other transactions like card payments. Notably, sometimes
the lack of information from the outside environment may
lead to imperfect or incorrect graph construction, for example
by creating multiple nodes instead of a single one, in the case
of multiple accounts belonging to the same external entity.

Here are a few characteristics of the Libra dataset, after
preprocessing (the amounts are converted to local currency):

• number of transactions: 4558805
• mean transaction value: 3264
• median transaction value: 152
• max transaction value: 42 million
• min transaction value: 0.01

1In compliance with Regulation EU 679/2016 ("GDPR") and other rel-
evant legislation, no personal identifiable information (personal data) has
been disclosed during the development of the present paper or of any
associated work that has been done in relation to the present paper.

2 0 2 4 6 8
log10(amount)

0

100000

200000

300000

400000

500000

#t
ra

ns
ac

tio
ns

FIGURE 3: Histogram of transaction amounts for the Libra
dataset.

Figure 3 shows the distribution of the transferred amounts.
We note that it can be approximated with a log-normal
distribution, although having a somewhat heavier tail.

The associated graph of transactions, denoted GLibra has the
following characteristics:

• number of nodes (distinct client IDs): 385100
• number of edges (remind that there is a single edge

between two nodes, with cumulated amounts over all
transfers between those nodes): 597165

• average in/out degree: 1.55
We see that the graph is sparse. Most of the clients are
involved in a single transaction during the chosen 3-month
time window.

The transactions have been labeled by members of the
AML division of the bank. There are two kinds of labels.
The first is named alert and is generated by an undisclosed
set of rules; an alert means that the respective transaction
has to be investigated by specialized personnel. The second
kind of label is called report and marks a transaction whose
level of suspicion is high enough to be reported for further
examination to the state authorities that investigate money
laundering. (So, note that a report does not necessarily indi-
cate crime.) Obviously, a transactions labeled ’report’ is also
labeled ’alert’. Some information on alerts and reports is as
follows:

• transactions with alerts: 517
• transactions with reports: 11
• distinct nodes involved in transactions with alerts: 600
• distinct nodes involved in transactions with reports: 15

We associate with each node anomaly weights for alerts and
reports, defined as the number of transactions labeled as
alerts or reports, respectively, to which the node participates.
For example, the maximum number of alerts associated with
a node is 22 and the maximum number of reports is 3. In
general terms, we will also name anomaly an alert or a report.
Some examples of neighborhoods of anomalous nodes will
be shown in Section IV-A. The graph can be downloaded in
csv format from http://graphomaly.upb.ro/.

VOLUME x, 2022 5

http://graphomaly.upb.ro/

Connection Probability G7 G12 G17 G22

Min in-block 0.0003 0.0003 0.0003 0.0003
Max in-block 0.005 0.007 0.008 0.01

Min inter-block 0.0001 0.0001 0.0001 0.0001
Max inter-block 0.0002 0.0004 0.0006 0.0008

No. edges 437334 726825 878293 112866
No. connected pairs 377059 628017 877756 112814

Density 7.54 12.56 17.55 22.56

TABLE 1: Synthetic graphs properties.

B. SYNTHETIC DATASETS
Following previous work and notably [4], we have generated
synthetic test graphs that have a general ’normal’ structure
on which are injected anomalies suited for investigating fraud
and particularly money laundering in bank transactions.

1) Underlying graph
The graph of normal (legitimate) transactions is generated
using a stochastic block model (SBM) consisting of 50000
nodes and 5000 modules. The intuition behind the choice is
that, in real financial networks, communities (formalized here
as blocks) tend to be rather on the small side, with few actors
maintaining regular activity among themselves.

The size of each module is randomly set such that each
block contains between 0.01% and 0.9% of the total number
of nodes. We start by constructing a directed graph based on
connectivity probabilities for the nodes and, after building the
underlying network structure, we add multiple edges between
already connected nodes, in order to form the multidirected
graph. More precisely, the SBM is defined in terms of edge
probabilities either between nodes belonging to the same
block or between two nodes from different blocks. In order
to obtain graphs with different edge densities, we vary these
probabilities.

We generate four types of graphs, named according to their
density: G7, G12, G17, G22, the index being the average degree
of a node (in fact, the average degrees are slightly higher,
see Table 1). Note that the degree is the sum of indegree and
outdegree.

With the underlying graphs constructed as such, we further
add edges between connected nodes. In order not to create
artificially dense structures within the graph, we condition
this addition on the existing local neighborhood connectivity
of each node. As such, we first randomly choose an upper
limit for the number of outgoing edges and check whether
the threshold is already met by the existing connections of
each node. Otherwise, we iterate through the neighborhood
of the node and further add outgoing edges until the limit
is reached. Thus, generally, graphs that are already dense
have fewer multiple edges between two nodes, while less
dense graphs present more multiple edges. In choosing the
threshold, we take the maximum number of outgoing edges
from a node to nodes belonging to different blocks to be 3, in
all experiments. The number of outgoing edges from a node
to other nodes in the same block, the maximum is 6, but for
G12, where it is set to 10.

Table 1 presents the stochastic block model connectivity
probabilities for each graph, together with the resulting num-
ber of edges and average density. The row ’number of edges’
corresponds to the multigraph. The row below it shows the
number of edges in the compacted oriented graph, where
there is a single edge between a pair of nodes, with cumulated
amounts of all transactions between those nodes. The edge
density is computed with the latter number of edges, as
relevant for our approach. The number of edges is that of the
graph containing anomalies, which are added as described
next. All the reported values are means over three different
instances of the same graph configuration.

2) Anomalies
We experiment with different structured anomalies that are
typical to financial frauds (see again Section II for an intro-
duction to the problem). These are cliques, stars and rings,
shown in Figure 1.

For cliques, we devise three variants, which we call regu-
lar, directed and random. Regular cliques are constructed by
first generating edges in both directions between every two
nodes and then removing a fraction of these edges at random.
As such, the resulting structure is not a complete clique. The
fraction is set to 40% in all experiments. In directed cliques,
there exists an edge between every two nodes, however the
direction is kept the same, such that it mimics a flow of
money that goes in one direction only; in Figure 1 (top
middle), the orange node only receives (outdegree 0), the
green node only sends (outdegree 9) and the blue nodes have
outdegrees with all values from 1 to 8 (the clique has 10
nodes). Lastly, random cliques are fully connected cliques
in which the direction of edges is assigned at random. As a
result, it may happen that one node only has incoming edges
(thus acting as a sink), or it may only have outgoing edges
(thus acting as a source), but typically there is no consistent
flow direction.

In order to obtain more realistic rings, we employ a Watts-
Strogatz model [48] with mean degree K = 4 and rewiring
parameter β = 0.2. So, the ring of full length is not
necessarily complete and also there are shortcuts. The edges
are oriented in the same direction, anti-clockwise in Figure 1
(bottom left).

We experiment with two types of star structures: regular
and directed. Regular stars contain one node that only has
incoming edges, while the others only have outgoing edges.
In directed stars, the flow passes from nodes that only have
outgoing edges, through a single node that collects these
edges and is in turn connected to nodes that only have ingoing
edges. Figure 1 (bottom middle and right) shows typical
examples of each of these structures.

All anomalies contain 10 nodes. Each graph contains 5
rings, 15 cliques and 5 stars, regardless of their type. These
anomalies are implanted in the underlying transaction graph
by randomly selecting the nodes and adding the correspond-
ing edges. We do not restrict nodes to belonging to only one
anomaly; however, superpositions are rare: the number of

6 VOLUME x, 2022

anomalous nodes is usually 249 or 250. So, the percentage
of anomalous nodes is 0.5%.

For each of the four types of graphs defined in Section
III-B1, we experiment with different types of anomalies. We
update our naming convention by adding a letter that shows
the type of clique anomalies: no letter for regular clique, ’d’
for directed clique, ’r’ for random clique.

3) Edge Attributes
In order to obtain a realistic setup, transaction amounts
follow a base-10 log-normal distribution, which resembles
the observed real distribution in the Libra dataset, as shown in
Figure 3. The location and scale of the distribution are set to
3 and 1 respectively. We then prune the values to the [1, 106]
range; this operation decreases the mean to about 12000
from its theoretical value 14167; the median value of 1000
is only slightly affected. For each anomaly, when attributing
the transaction amounts, we generate a normal distribution
of mean and variance chosen uniformly at random from the
following ranges: [104, 105] for the mean and [1000, 3000]
for the variance.

IV. NODE FEATURES
As mentioned in Section I-B, we propose sets of features that
capture essential properties of the transaction graph. Then, a
general AD algorithm is run on the computed feature values.
The resulted scores are used to build a list in which the nodes
are ordered decreasingly by abnormality likelihood.

Some of the features are basic information for a node k of
the (directed) transaction graph G. We denote

Ni(k) = {ℓ ∈ V | (ℓ, k) ∈ E}

the set of in-neighbors of node k. Similarly,

No(k) = {ℓ ∈ V | (k, ℓ) ∈ E}

is the set of out-neighbors. The set of basic features is

Fbasic = {in/out degree}
∪ {total in/out amount}
∪ {average in/out amount}

(1)

where the features are defined as follows:
• in/out degree: the numbers di(k) = |Ni(k)| and

do(k) = |No(k)| of edges that enter or exit node k;
• total in/out amount, the total amount of money that

enter/exit node k:

tai(k) =
∑

ℓ∈Ni(k)

sℓk, tao(k) =
∑

ℓ∈No(k)

skℓ;

• average in/out amount, which is simply the total amount
divided by the total number of transactions involving
node k as destination/source; for example, the average
in amount is

aai(k) =
tai(k)∑

ℓ∈Ni(k)
nℓk

.

Since money laundering is efficient only if large amounts
of money are manipulated (in any case clearly larger than
usual transfers), we expect the total and average amounts to
contain relevant information. The degree is also relevant for
the connectivity of a node.

The egonet has been shown [2] to be a good tool for the
detection of some fraud structures, especially cliques and
stars. The egonet E(k) (of radius 1) of node k is the subgraph
of G generated by node k and all its direct neighbors. So, its
nodes are

k ∪Ni(k) ∪No(k) (2)

and its edges are all edges in E between these nodes. Sim-
ilarly, one can define the in- and out-egonets, but we will
use only the full egonet. Also, egonets taking into account
extended neighborhoods could be considered, but their size
can become impractical for large graphs. Moreover, from
the perspective of a single bank, the egonets of radius 2
give a more distorted view than those of radius 1, since
the connections between the clients of other banks are not
available.

We note that the features from Fbasic are obviously also
egonet features. A specific egonet feature is

• egonet edge density, which is the ratio between the
number of edges of the egonet and its number of nodes.

Other features can be considered, like the egonet weight,
which is the sum of amounts on all its edges, as well as other
derivated features.

All these features have been used in a form or another in
previous research. Besides them, we propose some new ones,
as described below.

A. REDUCED EGONET
Definition 1: The reduced egonet (or egored) Ered(k) of node
k ∈ V is its egonet E(k) from which we remove the nodes
that are connected only with k, no matter the direction of the
edge.
Example 1: We give here of two examples from the Libra
dataset, built around nodes with reports. Figure 4 shows an
egonet and the corresponding egored. The colors are: red for
the central node, orange for other nodes with reports, blue
for the normal nodes that have at least two edges (including
the case, visible in the figure, where both edges are with the
center node, in both directions) and green for the normal
nodes with a single edge. The egonet has 24 nodes and the
egored only 9 nodes. Figure 5 shows another example, now
containing three nodes with reports; the egonet has 26 nodes
and the egored has 19.

The basic features can be immediately redefined for the
egored. For example, the egored indegree is the number of
edges from Ered(k) that enter node k. Obviously, the relation
egored indegree ≤ indegree holds. So, we add to our list of
possible features the egored total amounts, average amounts
and edge density.

Moreover, if we want a normalization, we can define, for
example, the egored relative indegree, which is the ratio

VOLUME x, 2022 7

FIGURE 4: Egonet (top) and egored (bottom) of an anomaly
from the Libra dataset.

between the egored indegree and the indegree. Hence, this
is a number between 0 and 1. Relative values can be defined
similarly for the other egored features. Note that while the
total amount cannot be larger in the egored, the egored
average amount may be in any relation with the egonet
average amount.

The benefits of egoreds can be seen when looking at
the differences between the egonet and the egored features.
They are biased towards the extreme in some fraud patterns
compared with a normal node.

• Nodes that are tightly connected (near-cliques) with
possibly heavy transactions, but that have also legiti-
mate activities with other accounts, are more visible in
the egored because the legitimate transactions go often
through isolated nodes. Hence, the egored amounts are
nearly equal to the egonet amounts, but the egored
density is clearly higher and also the average amounts
can be higher.

• For a pure star pattern, the egored of the center node
contains only that node. For a near-star pattern, the
egored is still almost depleted of nodes and the amounts
are much smaller than in the egonet.

• In a tripartite graph, like the FlowScope [7] AML
model, made of sources, intermediaries and destinations
(see Figure 2), the egored has clearly distinguishing
features. The sources/destinations send/receive large
amounts to/from intermediaries and have relatively few
interactions with other accounts; they are similar to
volcano/blackhole (star) graphs [6]. The intermediaries

FIGURE 5: Egonet (top) and egored (bottom) of another
anomaly from the Libra dataset.

have balanced and fairly large in-out amounts. In all
cases, their egoreds are almost empty and show only
small amounts, hence they are very different from
the egonets. It is also quite unlikely that sources-
intermediaries-destinations are all at the same bank, so
it is hard to see the full tripartite graph, but only some of
the accounts and the transactions. However, the relative
aspects of the egored and egonet are the same even if
only part of the graph is accessible.

Example 2: Coming back to Figure 4 we see that for real
data the anomaly patterns are not necessarily so obvious.
However, the average in/out degree, which is equal to the
edge density, is 1.79 for the egonet and 3.11 for the egored,
which is a quite significant change. Similarly, in Figure 5, the
edge density is 2.12 for the egonet and 2.53 for the egored;
the growth is smaller but still present. We note that, in both
cases, the anomalous nodes are present in the egored. The
opposite situation can be seen in Figure 6, also built from
the Libra dataset, where the egonet is a directed star, which
is a textbook pattern; only the egonet is shown, since the
egored is the center node alone. Note, however, that only two
transactions (and three nodes) are labeled as reports.
Example 3: Figure 7 shows the distributions of the outdegree
and egored outdegree for all nodes of an instance of the
synthetic graph G22 and also for the anomalies in the same
graph. Although the distribution of the outdegree for the
anomalies has clearly a larger mean, its shape is not so differ-
ent from that of normal nodes; the proportion of anomalies
for a given value of the degree does not vary significantly.

8 VOLUME x, 2022

FIGURE 6: A directed star egonet around an anomaly of the
Libra dataset.

10 15 20 25 30 35 40 45
degree

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g1

0(
#n

od
es

)

Outdegree
all nodes
anomalies

0 2 4 6 8 10
degree

0

1

2

3

4

lo
g1

0(
#n

od
es

)

Egored outdegree
all nodes
anomalies

FIGURE 7: Outdegree (top) and egored outdegree (bottom)
distribution for a synthetic graph G22, for all nodes and
anomalies.

The outdegree does not give sufficient information for dis-
tinguishing anomalies. On the contrary, the egored outdegree
of the anomalies is clearly informative; larger values of this
feature are much more likely for anomalies than for normal
nodes.

For the Libra dataset the direct benefit of each egored
feature is not that obvious. However, several egored features
together appear to give benefits, as shown in Section VI.

B. RANDOM WALK FEATURES
Random walk (RW) is a simple tool for graph analysis (and
not only) that can be used in many circumstances. Anomaly
detection in graphs has seen several ways of putting RW to
work, a direction initiated in [49]. In [50], RWs use transition

probabilities based on a local information graph; the purpose
is to detect less connected points, associated with anomalies,
a situation rather opposite to ours. In some neural network
approaches, for example [24], [27], RWs are directly used
as input for the network, as a sampling method for the input
graph. We use RWs to extract information on the amounts
circulated over long paths, especially in the case of cycles
(rings).

For a node k, we generate random walks with given
maximum length r, starting or ending in k. (The backward
RWs, ending in k, are generated forward on the reversed
graph.) Denote k0 = k, k1, . . . , kr the nodes of a RW. On
each RW, we compute the amount transferred from start to
end:

min
i=1:r

ski−1,ki
. (3)

Normally, this amount is small, as there is little correlation
between the transactions of the nodes. When the amount is
large, it may show money deliberately circulated through
many accounts in an attempt to cover their origin. Especially
important is the case when the RW returns to the start node
k0. If that happens, we cut the RW to the current length.
Definition 2: The feature RW ring max associated with node k
is the maximum of the amount (3) over all the RWs of length
at most r starting or ending in node k, for which there is an
i ≤ r such that k = k0 = ki in (3); if there is no such RW,
the feature value is zero.

In other words, RW ring max is the maximum amount that
is transferred over a cycle (or ring) containing the node. We
have computed and used other features, like the average or
the maximum amount over a RW, but we will not report their
results, as they seem to bring no extra benefits for the data
considered in this study.

An important RW issue is that of the modality for choos-
ing, once in a node k, the next node from No(k) (when
generating a forward RW) or Ni(k) (for a backward RW).
We adopted two methods to choose the transition probability:

• equal probability; this method was used with the Libra
data, since the graph is sparse and the likelihood of
finding relevant paths is large;

• probability proportional with the amount; so, the prob-
ability of choosing node ℓ ∈ No(k) in a forward RW
is

skℓ∑
j∈No(k)

skj
;

this method was used with the synthetic data, where
the edge density is large and so random walks must be
helped to "follow the money".

Of course, the second method is slower, since we have to read
an edge attribute for each neighbor.

V. ANOMALY DETECTION ALGORITHMS
We combine now the features defined in Section IV in sets of
features to be used for anomaly detection. Only the feature
sets that proved successful or are natural building stones for

VOLUME x, 2022 9

our construction will be presented, although we have tried
many other combinations.

The egonet related feature set is

Fegonet = Fbasic ∪ {egonet edge density}, (4)

where the basic features are defined in (1).
We extend this set with the similar egored features and

obtain

Fegored = Fegonet ∪ {egored relative in/out degree}
∪ {egored relative total in/out amount}
∪ {egored average in/out amount}
∪ {egored edge density}

(5)
Although egonet and egored features have equal share, here-
after we name the above set egored feature set (and only
sometimes egonet+egored). Note that the absolute value of
the egored average amount is used rather than the relative
one, as it gives better results, although in principle there
should be no significant difference.

Finally, we make use of a single random walk feature,
added to the egonet features:

Fegonet+RW = Fegonet ∪ {RW ring max} (6)

In the synthetic datasets, the number of transactions be-
tween two nodes is small and also has small variation, hence
we remove in/out average amounts from (1) and (5) and
obtain features sets denoted F ′

egonet, F ′
egored and F ′

egonet+RW as
variations of those defined in (4), (5) and (6), respectively.
The reason is that average amounts essentialy duplicate the
total amount information (unlike in the Libra case, where
average and total amounts have quite a different distribution),
thus giving it too much weight with respect to the topology
information carried by the other features.
Remark 1: The Python implementation for extracting the
above features is relatively straightforward. We note a some-
what unexpected fact. The egonet of a node can be computed
using the Networkx function ego_graph; since we want
the full egonet, we need to first convert the oriented graph to
an unoriented one; surprisingly, the function ego_graph is
quite slow in computing an egonet of radius 1. In our experi-
ence, it is much faster to simply identify the in/out neigh-
bors using the functions predecesors/successors
and then extract the subgraph corresponding to the nodes
from (2) using the subgraph method.

After computing the features, the anomaly detection is
made with Isolation Forest (IF) [51], using the implementa-
tion from PyOD [39]. Although any other AD method could
be used, we selected IF due to the good performance with our
data and reasonable execution time.

VI. EXPERIMENTAL RESULTS
We report here results of our method described in Sec-
tion V, with feature sets egonet (4), egored (or rather
egonet+egored) (5), or egonet+RW (6), and also results of
other methods that have proved successful in graph anomaly

detection problems with known patterns. OddBall [2] is
extremely successful in detecting near-cliques. The method
from [4] can detect several types of patterns; unfortunately,
its complexity forbids the computation of many of the pro-
posed statistics for a graph the size of the Libra one. We
selected a set of simple statistics, namely those using the
Geometric Average of Weights (GAW, GAW10, GAW20)
and the standardised version of the node degree; this is called
the basic module in [4, Sec.3.1]; here, we call it GAW; the
result is directly a score, hence no AD method is required.

The Python implementations of our algorithms are avail-
able at http://graphomaly.upb.ro/. We have used the OddBall
implementation given by the authors at https://www.andrew.
cmu.edu/user/lakoglu/tools/Oddball-lite.zip. The GAW im-
plementations have been taken from the sources published
by the authors at https://sites.google.com/site/elliottande/
anomalydetection. The tests have been made on a laptop with
an i7 processor with 6 cores and 16 GB memory. Isolation
Forest was taken from PyOD [39]; we have run it with the
default parameters, with the exception of the number of trees,
which was taken equal to 200 instead of the default 100 value.

The true positive rate (TPR) or recall is the ratio of true
positives and total number of anomalies. Since for both
Libra and synthetic data a node can be in several suspicious
transactions, we associate to node k the anomaly weight wk,
which is the number of these transactions; a normal node has
wk = 0. Denoting W =

∑
k∈V wk the sum of all weights

and assuming the nodes are ordered by an AD method in
decreasing order of perceived abnormality, the TPR is

TPR(k) =
1

W

k∑
i=1

wk. (7)

We note the W is twice the number of suspicious transac-
tions; for Libra data, W = 1034 for alerts and W = 22 for
reports; for the synthetic graphs, W = 1910 for the graphs
containing regular cliques and W = 1640 for the graphs
containing directed or random cliques.

Since the number of nodes is large and checking the
fraudulent nature of the transactions involving an account
requires the work of a human specialist, we are interested
in finding the relevant anomalies in the first few outliers
predicted by the AD method. We focus on the TPR for the
first 0.1%, 0.2%, 0.5% and 1% of the nodes, with special
emphasis on the first mark; note that 0.1% means 385 nodes
for the Libra data, which is not a small number.

As a global measure, we also compute the TPR area under
curve, defined as

TPR AUC(k) =
1

k

k∑
i=1

TPR(i). (8)

We report the TPR AUC for the first 1% of nodes and denote
it AUC_1%. For the sake of completeness, we also give the
overall TPR AUC, computed over all nodes of the graph.

We note that TPR AUC is more relevant than receiver
operating characteristic (ROC) AUC when anomalies are

10 VOLUME x, 2022

http://graphomaly.upb.ro/
https://www.andrew.cmu.edu/user/lakoglu/tools/Oddball-lite.zip
https://www.andrew.cmu.edu/user/lakoglu/tools/Oddball-lite.zip
https://sites.google.com/site/elliottande/anomalydetection
https://sites.google.com/site/elliottande/anomalydetection

weighted, especially when the AUC is partial, only on 1%
of nodes in our case. If two anomalies with different weights
have successive positions in the score-ordered list, ROC AUC
is the same no matter the relative order of the two anomalies,
while TPR AUC is larger if the anomaly with larger weight is
first. On the other side, the perfect value for ROC AUC is 1,
while for TPR AUC it must be computed from case to case;
for our data, where the number of anomalies is very small,
the perfect TPR AUC value is close to 1. For example, for the
alerts in Libra data, TPR AUC is 0.99946; for the synthetic
graph G22, it is 0.9983.

A. RESULTS ON LIBRA DATASET
The results on the Libra graph of the methods listed in the
beginning of the section are shown in Table 2, separately for
alerts and reports. For our methods, the results are averaged
over 10 IF runs. Figure 8 gives the TPR evolution on the first
1% predicted anomalies, for our methods.

The RW features were computed using RWs of length
r = 5 and 100 repetitions for each starting/ending node.
OddBall gives anomaly scores for nine pairs of statistics.
The results given in Table 2 are the best over all pairs; they
are obtained by "egonet number of nodes vs egonet number
of edges" for reports, and "egonet-in-degree vs egonet-in-
weight" for alerts. The other statistics give rather poor results.
We report here the results for the case where the (unique)
weight on edge (k, ℓ) used by OddBall was the total amount
skℓ; the results for average amounts are similar.

The results from both Table 2 and Figure 8 show that the
combination of egored and egonet features is clearly the best
on the first marks (0.1% and 0.2% of the number of nodes)
and marginally better on AUC_1%; note that, for Libra data,
the ideal alerts TPR value at 0.1% is 0.793, which shows
that more than half of the alerts than can discovered are
discovered. Egonet features alone are more successful in the
long run, but clearly less effective in the top scores region.
The single RW feature added to them appears to boost per-
formance on the initial anomalies, while diminishing the long
term effect; it is not so effective as egored features, but can
serve as a compromise approach. GAW, despite its simplicity,
has a reasonable performance, although clearly below that
of egonet+RW. Finally, OddBall obtains low performance
indicators, although it cannot be totally dismissed, the results
on reports being near those of GAW.

The overall AUC results, shown in Table 3, confirm the
trend that can be extrapolated from Figure 8. As we said,
these results have smaller significance, since we do not want
to emulate exactly the rule-base AD in use, but to extend it in
a robust manner to other possible anomalies.

The execution times for the extraction of the egored and
RW features are about 35 and 30 minutes, respectively. The
egonet features are extracted together with the egored ones,
so we don’t have a specific time for them; the most time
consuming task, the extraction of the egonet from the graph,
is common. Remind that the random walks are built with
equal probabilities of the neighbors, see Section IV-B. An

0 500 1000 1500 2000 2500 3000 3500 4000
#nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP
R

egonet
egonet+egored
egonet+RW

0 500 1000 1500 2000 2500 3000 3500 4000
#nodes

0.0

0.2

0.4

0.6

0.8

TP
R

egonet
egonet+egored
egonet+RW

FIGURE 8: TPR on first 1% predicted anomalies for the
Libra dataset. Top: alerts. Bottom: reports.

IF run takes at most 40 seconds. OddBall requires about two
hours for computing all its statistics. GAW is faster and needs
only about 10 minutes.

Besides the methods whose results are given above, we
have tried others, notably node2vec [21], with poor results.
Corroborating with the OddBall results, we reach the natural
conclusion that graph topology information alone, although
important, is not sufficient for good performance without the
information on the transaction amounts.

B. RESULTS ON SYNTHETIC DATA
We run now the same methods on the synthetic graphs. We
have generated three graphs from each of the 12 categories
described in Section III-B: four graph densities (average
degree 7, 12, 17, and 22) and three types of cliques (regular,
directed, random). We remind that the other anomalies are
the Watts-Strogatz ring and the star. Since the results with
the directed star anomaly structure are similar to those with
the regular star, they will not be reported.

For our methods, the parameters are the same as for the
Libra data, with the exceptions listed below. As explained in
Section V, all average amounts have been removed from the
features. The RW length is r = 10 and, during the walk, the
probability of the next edge is proportional with the amount.
The IF results are averaged over 5 runs.

For OddBall we report the results of "egonet number of

VOLUME x, 2022 11

Method Alerts Reports
AUC_1% TPR 0.1% TPR 0.2% TPR 0.5% TPR 1% AUC_1% TPR 0.1% TPR 0.2% TPR 0.5% TPR 1%

Fegonet 0.5990 0.2873 0.4365 0.6607 0.8149 0.5747 0.1455 0.3364 0.6727 0.8500
Fegored 0.6042 0.4045 0.5143 0.6596 0.7446 0.6032 0.3545 0.4364 0.6955 0.7727

Fegonet+RW 0.5991 0.3322 0.4652 0.6605 0.7855 0.5945 0.2818 0.3636 0.6818 0.8364
OddBall 0.2504 0.0445 0.0948 0.2514 0.4671 0.4183 0.1364 0.2727 0.5454 0.5909

GAW 0.5561 0.1982 0.4265 0.6286 0.7843 0.4250 0.1362 0.3636 0.5000 0.5909

TABLE 2: TPR results for several methods on the Libra graph. The best result on each column is in bold.

Method Alerts Reports
Fegonet 0.9943 0.9951
Fegored 0.9840 0.9906

Fegonet+RW 0.9939 0.9948
OddBall 0.6114 0.8139

GAW 0.9912 0.9779

TABLE 3: TPR AUC for several methods on the Libra graph.

nodes vs egonet number of edges", which is consistently
better than the other statistics.

The TPR AUC results are given in Tables 4 and 5 and
consist of averages over the three instances of each graph.
The AUC_1% values from Table 4 show a few trends. The
results are usually the best for the lowest graph density and
worsen as the density increases; this is natural, since the
anomalies have the same size and so the anomalous pattern
is more difficult to find in a denser graph. For most methods,
the results on the graphs containing directed cliques are the
worst, followed closely by those containing random cliques;
the difference is small for the egonet and egored features and
larger for the other methods. For RW this is explainable by
the inexistence of rings in the directed clique and the lower
probability of finding rings in a random clique. For OddBall
we do not have an explanation; however, OddBall shows the
largest variation of the results between instances of the same
graph type, in contrast with our methods, which are quite
consistent.

Egored features give the best results in most categories,
followed closely by OddBall. Egonet+RW has clearly better
results than egonet only for the graphs containing cliques,
while for the other graphs the situation is somewhat reversed.
GAW has poor results in the AUC_1% category.

The results for the overall TPR AUC, shown in Table
5, give a slightly changed ranking. While egored is the
clear winner, egonet+RW takes the second position, while
OddBall falls behind and is beaten even by egonet in several
cases. Since for the synthetic graphs the ground truth is
totally available, the overall TPR AUC is certainly much
more relevant than for the Libra data. So, we can say that
the RW approach brings benefits to the egonet one, as its
results are always better. Also, although GAW keeps the
lowest ranking, its results are overall decent.

To get more insight on the behavior of the methods, we
show in Figures 9–11 the TPR curves on the first 2% of the
nodes, separately for each type of anomaly, on the densest
graphs that we used. The curves are for a single graph in each
category and, for our methods, for a single IF run; however,
we chose a run whose results are close to the average.

As expected, OddBall has excelent results for all types of
cliques, followed closely by the egored approach. Egonet and
egonet+RW curves rise slower, but still reach 1 in the first
2% of the nodes or not much later.

For rings, the situation is different. The RW approach has
the best start, detecting earlier than other methods part of
the anomalous nodes on rings; this is explained by the RW
feature that is able to reveal rings with large transactions.
The egored approach detects more anomalies, but slower.
OddBall has inconsistent results, often reasonably good (es-
pecially in Figure 11) but sometimes quite poor, like in Figure
10. Egonet alone behaves rather poorly on all graphs.

Finally, most methods detect well enough star centers,
especially egored and OddBall. Since the star centers are
involved in many "fraudulent" transactions, their weight is
much larger than the weight of the other nodes in the star; the
detection of a star center leads to a large increase of the TPR
curve, here precisely with 0.1 (since stars have 10 nodes, the
weight of the center is 9, while the other nodes have weight 1;
there are five stars and the centers gather half of the weights).
The other nodes in the star are actually not easily discov-
erable by the studied methods; however, once the center is
discovered, a targeted analysis of its neighborhood can reveal
the star structure; this is beyond our purpose here.

So, the egored approach is nearly best for all types of
anomalies, which shows its versatility and explains the over-
all best position among the studied methods.

The execution times of the methods depend on the density
of the graph. The extraction of egored (and egonet) features
takes from 38 seconds for G7 to 140 seconds for G22. RW
features need between 55 and 80 minutes; the increased time
with respect to Libra data is explained by the larger RW
length and the proportional probability computation. An IF
run on the extracted features takes less than 5 seconds; here,
the number of nodes is important, hence the smaller time
compared with Libra data. OddBall needs between 250 and
575 seconds for computing all its statistics. Finally, GAW is
again the fastest, with times between 44 and 58 seconds.

C. DISCUSSION
We examine now the results of the proposed methods on both
datasets, real and synthetic. The egored approach behaves
very well in the early detection of a good amount of anoma-
lies (alerts and reports) from the Libra dataset. It also quickly
detects most of the artificial anomalies from the synthetic
graphs and has the best overall TPR AUC performance.
So, we can say that putting together the egored and egonet

12 VOLUME x, 2022

Method G7 G7d G7r G12 G12d G12r G17 G17d G17r G22 G22d G22r
F ′

egonet 0.6546 0.6322 0.6568 0.6433 0.6208 0.6233 0.6062 0.5731 0.5813 0.5739 0.5721 0.5703
F ′

egored 0.8205 0.8012 0.7989 0.8084 0.7917 0.7886 0.7918 0.7740 0.7649 0.7790 0.7476 0.7495
F ′

egonet+RW 0.8011 0.6402 0.6429 0.7880 0.6046 0.5741 0.7662 0.5039 0.5031 0.7640 0.4593 0.4640
OddBall 0.8214 0.7348 0.8049 0.7769 0.7610 0.7571 0.7616 0.7132 0.7670 0.7733 0.7244 0.7424

GAW 0.2759 0.2172 0.2215 0.2454 0.1647 0.1477 0.2531 0.1538 0.1586 0.3062 0.1650 0.1912

TABLE 4: TPR AUC_1% results for several methods on synthetic graphs.

Method G7 G7d G7r G12 G12d G12r G17 G17d G17r G22 G22d G22r
F ′

egonet 0.9892 0.9880 0.9889 0.9883 0.9853 0.9857 0.9831 0.9804 0.9774 0.9768 0.9716 0.9730
F ′

egored 0.9978 0.9975 0.9978 0.9978 0.9974 0.9973 0.9957 0.9961 0.9943 0.9940 0.9925 0.9929
F ′

egonet+RW 0.9950 0.9922 0.9923 0.9942 0.9900 0.9892 0.9894 0.9845 0.9793 0.9864 0.9761 0.9778
OddBall 0.9944 0.9799 0.9933 0.9874 0.9807 0.9580 0.9760 0.9450 0.9882 0.9814 0.9656 0.9813

GAW 0.9654 0.9584 0.9582 0.9495 0.9361 0.9317 0.9422 0.9163 0.9167 0.9408 0.9056 0.9178

TABLE 5: TPR AUC results for several methods on synthetic graphs.

features gives a robust graph AD method, covering well real
and simulated situations.

The random walk approach is also promising. For Libra
data, the addition of the RW feature to the egonet ones
improves anomaly detection in the first 0.1% nodes. For
synthetic data, it improves the overall behavior. It is also a
method very suited for online implementation, as individual
random walks can be quickly generated as the graph evolves
and feature values can be permanently updated. In contrast,
egonet and egored features are a coarser computation task.

Among the other approaches, egonet features give also
balanced results on the real and synthetic data, but weaker
than those of the proposed methods. OddBall discovers very
well cliques and star centers, but has a weak performance
on the Libra data. On the contrary, GAW has fairly good
behavior on the Libra data (although below our methods),
but is poor on the synthetic data.

VII. CONCLUSIONS AND FURTHER WORK
We have introduced a method for anomaly detection in bank
transactions, with the purpose of detecting money laundering
activities. Our method can be summarized as follows:

1) Given a list of transactions, build the transaction graph,
where nodes are accounts and edges have two at-
tributes: the cumulated amount transferred from source
to destination and the number of transactions.

2) Compute node features. Here is our main contribution.
Most of these features are derived from the notion
of reduced egonets (egoreds) and consist of in- and
outdegrees, total and average amounts sent/received
by a node, and edge density. These features are used
together with the corresponding (standard) egonet fea-
tures. We have also proposed new random walk fea-
tures.

3) Run an anomaly detection algorithm, Isolation Forest
in our case, on the feature values, to detect abnormal
nodes (accounts).

We have obtained very good results with this method.
Many of the labeled anomalies are recovered early in the
Libra (real) dataset and also the behavior on synthetic graphs

is excellent. So, our method appears to be adequate and
robust.

Moreover, comparisons with some of the relevant existing
methods, like OddBall or statistical approaches (GAW), are
favorable; better true positive rate is obtained with compa-
rable execution time. We have also shown that the addition
of the newly proposed egored or random walk features to
existing egonet features always improves the results.

We conclude that our method can bring clear benefits to
AML activities, from the specific angle of the graph structure
of the bank transactions. Certainly, other types of features can
be added with the purpose of getting a more comprehensive
approach.

Further work will be dedicated to the development of
online algorithms and to validation on larger datasets, ideally
on real datasets covering the transactions of several banks.

ACKNOWLEDGMENT
We thank Libra Internet Bank for sharing anonymized trans-
action data for analysis and are grateful to their AML spe-
cialists for helpful comments and information.

REFERENCES
[1] M. Levi, P. Reuter, and T. Halliday. Can the AML system be evaluated

without better data? Crime, Law and Social Change, 69(2):307–328, 2018.
[2] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anomalies

in weighted graphs. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pages 410–421. Springer, 2010.

[3] I. Molloy, S. Chari, U. Finkler, M. Wiggerman, C. Jonker, T. Habeck,
Y. Park, F. Jordens, and R. van Schaik. Graph analytics for real-time
scoring of cross-channel transactional fraud. In International Conference
on Financial Cryptography and Data Security, pages 22–40. Springer,
2016.

[4] A. Elliott, M. Cucuringu, M.M. Luaces, P. Reidy, and G. Reinert. Anomaly
detection in networks with application to financial transaction networks.
arXiv:1901.00402, 2019.

[5] A.E. Wegner, L. Ospina-Forero, R.E. Gaunt, C.M. Deane, and G. Reinert.
Identifying networks with common organizational principles. Journal of
Complex Networks, 6(6):887–913, 2018.

[6] Z. Li, H. Xiong, Y. Liu, and A. Zhou. Detecting blackhole and volcano
patterns in directed networks. In IEEE Int. Conf. Data Mining, pages 294–
303, 2010.

[7] X. Li, S. Liu, Z. Li, X. Han, C. Shi, B. Hooi, H. Huang, and X. Cheng.
Flowscope: Spotting money laundering based on graphs. In Proc. AAAI
Conference on Artificial Intelligence, volume 34, pages 4731–4738, 2020.

[8] Australian Transaction Reports and Analysis Centre (AUSTRAC). Money
laundering in Australia 2011.

VOLUME x, 2022 13

0 200 400 600 800 1000
#nodes

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

clique

egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.2

0.4

0.6

0.8

TP
R

ring

egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TP
R

star

egonet
egonet+egored
egonet+RW
OddBall

FIGURE 9: TPR for on first 1000 anomalies for a graph G22.
Top: clique. Middle: ring. Bottom: star.

[9] X. Sun, J. Zhang, Q. Zhao, S. Liu, J. Chen, R. Zhuang, H. Shen, and
X. Cheng. CubeFlow: Money Laundering Detection with Coupled Ten-
sors. arXiv e-prints, page arXiv:2103.12411, March 2021.

[10] X. Qiu, W. Cen, Z. Qian, Y. Peng, Y. Zhang, X. Lin, and J. Zhou. Real-
time constrained cycle detection in large dynamic graphs. Proceedings of
the VLDB Endowment, 11(12):1876–1888, 2018.

[11] S. Khuller and B. Saha. On finding dense subgraphs. In International
colloquium on automata, languages, and programming, pages 597–608,
Rhodes, Greece, 2009. Springer.

[12] S. Zhang, D. Zhou, M.Y. Yildirim, S. Alcorn, J. He, H. Davulcu, and
H. Tong. Hidden: hierarchical dense subgraph detection with application
to financial fraud detection. In Proc. 2017 SIAM Int. Conf. Data Mining,
pages 570–578. SIAM, 2017.

[13] B.A. Miller, M.S. Beard, P.J. Wolfe, and N.T. Bliss. A spectral framework
for anomalous subgraph detection. IEEE Transactions on Signal Process-
ing, 63(16):4191–4206, 2015.

[14] D. Huang, D. Mu, L. Yang, and X. Cai. CoDetect: Financial fraud
detection with anomaly feature detection. IEEE Access, 6:19161–19174,

0 200 400 600 800 1000
#nodes

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

clique_directed

egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.2

0.4

0.6

0.8

TP
R

ring
egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TP
R

star

egonet
egonet+egored
egonet+RW
OddBall

FIGURE 10: TPR for on first 1000 anomalies for a graph
G22d. Top: clique directed. Middle: ring. Bottom: star.

2018.
[15] B. Hooi, H.A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos.

FRAUDAR: Bounding graph fraud in the face of camouflage. In Proc.
22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
pages 895–904, 2016.

[16] J. Zhang, S. Liu, W. Yu, W. Feng, and X. Cheng. Eigenpulse: Detecting
surges in large streaming graphs with row augmentation. In Pacific-Asia
Conf. Knowledge Discovery and Data Mining, pages 501–513, 2019.

[17] B. Perozzi and L. Akoglu. Scalable anomaly ranking of attributed
neighborhoods. In Proc. SIAM Int. Conf. Data Mining, pages 207–215,
2016.

[18] W. Eberle, J. Graves, and L. Holder. Insider threat detection using a graph-
based approach. Journal of Applied Security Research, 6(1):32–81, 2011.

[19] D. Savage, Q. Wang, P. Chou, X. Zhang, and X. Yu. Detection of
money laundering groups using supervised learning in networks. ArXiv,
abs/1608.00708, 2016.

[20] X. Sun, W. Feng, S. Liu, Y. Xie, S. Bhatia, B. Hooi, W. Wang, and
X. Cheng. MonLAD: Money Laundering Agents Detection in Transaction

14 VOLUME x, 2022

0 200 400 600 800 1000
#nodes

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

clique_random

egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP
R

ring
egonet
egonet+egored
egonet+RW
OddBall

0 200 400 600 800 1000
#nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TP
R

star

egonet
egonet+egored
egonet+RW
OddBall

FIGURE 11: TPR for on first 1000 anomalies for a graph
G22r. Top: clique random. Middle: ring. Bottom: star.

Streams. In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining, WSDM ’22, page 976–986, New York,
NY, USA, 2022. Association for Computing Machinery.

[21] A. Grover and J. Leskovec. node2vec: Scalable feature learning for
networks. In Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery
and Data Mining, pages 855–864, 2016.

[22] R. Hu, C.C. Aggarwal, S. Ma, and J. Huai. An embedding approach to
anomaly detection. In 32nd IEEE Int. Conf. Data Engineering (ICDE),
pages 385–396. IEEE, 2016.

[23] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proc.
22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining,
pages 1225–1234, 2016.

[24] W. Yu, W. Cheng, C.C. Aggarwal, K. Zhang, H. Chen, and Wei Wang.
Netwalk: A flexible deep embedding approach for anomaly detection in
dynamic networks. In Proc. 24th ACM SIGKDD Int. Conf. Knowledge
Discovery & Data Mining, pages 2672–2681, 2018.

[25] K. Ding, J. Li, R. Bhanushali, and H. Liu. Deep anomaly detection on
attributed networks. In Proc. SIAM Int. Conf. Data Mining, pages 594–

602. SIAM, 2019.
[26] S. Bandyopadhyay, S.V. Vivek, and M.N. Murty. Outlier resistant unsuper-

vised deep architectures for attributed network embedding. In Proc. 13th
Int. Conf. Web Search and Data Mining, pages 25–33, 2020.

[27] Y. Zheng, M. Jin, Y. Liu, L. Chi, K.T. Phan, and Y.P.P. Chen. Generative
and contrastive self-supervised learning for graph anomaly detection.
IEEE Transactions on Knowledge and Data Engineering, 2021.

[28] A.M. Mubalaike and E. Adali. Deep learning approach for intelligent
financial fraud detection system. In 3rd Int. Conf. Computer Science and
Engineering (UBMK), pages 598–603, 2018.

[29] A.F. Colladon and E. Remondi. Using social network analysis to prevent
money laundering. Expert Systems with Applications, 67:49–58, 2017.

[30] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and
description: a survey. Data mining and knowledge discovery, 29(3):626–
688, 2015.

[31] Z. Chen, L.D. Van Khoa, E.N. Teoh, A. Nazir, E.K. Karuppiah, and K.S.
Lam. Machine learning techniques for anti-money laundering (AML)
solutions in suspicious transaction detection: a review. Knowledge and
Information Systems, 57(2):245–285, 2018.

[32] P. Irofti, A. Pătraşcu, and A. Băltoiu. Fraud detection in networks. In
Enabling AI Applications in Data Science, pages 517–536. Springer, 2021.

[33] T. Pourhabibi, K.L. Ong, B.H. Kam, and Y.L. Boo. Fraud detection: A
systematic literature review of graph-based anomaly detection approaches.
Decision Support Systems, 133:113303, 2020.

[34] W. Hilal, S.A. Gadsden, and J. Yawney. Financial fraud: A review of
anomaly detection techniques and recent advances. Expert Systems with
Applications, 193:116429, 2022.

[35] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q.Z. Sheng, H. Xiong, and
L. Akoglu. A comprehensive survey on graph anomaly detection with
deep learning. IEEE Trans. Knowledge and Data Engineering, 2021.

[36] G. Fernandes, J.J.P.C. Rodrigues, L.F. Carvalho, J.F. Al-Muhtadi, and
M.L. Proença. A comprehensive survey on network anomaly detection.
Telecommunication Systems, 70(3):447–489, 2019.

[37] N. Moustafa, J. Hu, and J. Slay. A holistic review of network anomaly
detection systems: A comprehensive survey. Journal of Network and
Computer Applications, 128:33–55, 2019.

[38] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos. Fast and accurate anomaly
detection in dynamic graphs with a two-pronged approach. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 647–657, 2019.

[39] Y. Zhao, Z. Nasrullah, and Z. Li. PyOD: A Python Toolbox for Scalable
Outlier Detection. Journal of Machine Learning Research, 20(96):1–7,
2019.

[40] Credit card fraud detection. https://www.kaggle.com/mlg-
ulb/creditcardfraud, 2018.

[41] IEEE-CIS fraud detection competition. https://www.kaggle.com/c/ieee-
fraud-detection/, 2019.

[42] M. Weber, G. Domeniconi, J. Chen, D.K.I. Weidele, C. Bellei, T. Robin-
son, and C.E. Leiserson. Anti-money laundering in bitcoin: Experimenting
with graph convolutional networks for financial forensics. arXiv preprint
arXiv:1908.02591, 2019.

[43] E. Lopez-Rojas, A. Elmir, and S. Axelsson. PaySim: A financial mobile
money simulator for fraud detection. In 28th European Modeling and
Simulation Symposium (EMSS), pages 249–255, Larnaca, Cyprus, 2016.

[44] Edgar Alonso Lopez-Rojas and Stefan Axelsson. Banksim: A bank
payment simulation for fraud detection research. 09 2014.

[45] Banksim. https://www.kaggle.com/ealaxi/banksim1.
[46] Synthetized fraud detection. https://www.synthesized.io/data-template-

pages/fraud-detection.
[47] Uncovering hidden financial crime through advanced simulation.

https://simudyne.com/wp-content/uploads/2019/10/Uncovering-Hidden-
FinCrime-Whitepaper.pdf.

[48] D. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393:440–442, 1998.

[49] H.D.K. Moonesinghe and P.N. Tan. Outrank: a graph-based outlier de-
tection framework using random walk. International Journal on Artificial
Intelligence Tools, 17(1):19–36, 2008.

[50] C. Wang, H. Gao, Z. Liu, and Y. Fu. A new outlier detection model using
random walk on local information graph. IEEE Access, 6:75531–75544,
2018.

[51] F. T. Liu, K.M. Ting, and Z.-H. Zhou. Isolation forest. In 8th IEEE Int.
Conf. Data Mining, pages 413–422. IEEE, 2008.

VOLUME x, 2022 15

BOGDAN DUMITRESCU was born in Bucharest,
Romania, in 1962. He received the M.S. and Ph.D.
degrees in 1987 and 1993, respectively, from
University Politehnica of Bucharest, Romania.
He is now a Professor with the Department of
Automatic Control and Computers, University
Politehnica of Bucharest, where he works since
1990. He held several visiting research positions
at Tampere University of Technology, Finland, in
particular that of FiDiPro fellow (2010-2013). He

was Associate Editor (2008-2012) and Area Editor (2010-2014) at IEEE
Transactions on Signal Processing. He authored the book "Positive trigono-
metric polynomials and signal processing applications" and coauthored
"Dictionary learning algorithms and applications". His scientific interests
are in optimization, numerical methods, and their applications to signal
processing, especially using sparse representations.

ANDRA BĂLTOIU (born 1985) is an Assistant
Professor at the Department of Automatic Con-
trol and Computers, University Politehnica of
Bucharest, where she also completed her BSc.,
MSc. and defended her PhD. Previously, she
worked as a research scientist at the Institute of
Space Science and the National Institute for Sport
Research, with both positions involving data anal-
ysis and signal processing. Starting with 2018, she
held a Research Assistant position at the Research

Institute of University of Bucharest. She is currently working on anomaly
detection.

ŞTEFANIA BUDULAN is an AI Software Engi-
neer with more than 6 years of hands-on experi-
ence, developing AI-driven solutions for industries
such as financial services, media, telekom and
IoT, as well as a fundamental research advocate,
especially in the field of Natural Language Pro-
cessing (NLP), as a coordinator of the AI research
development of several BSc. and MSc. students
at the University Politehnica of Bucharest, where
she, also, earned her MSc. degree in AI.

Ştefania has a strong interest towards creating viable state-of-the-art
solutions for industrial use, thus reducing the gap between academic research
and the industry reach and potential. Being an AI researcher and a software
engineer, an AI ethics, policy and governance promoter, she thoroughly
believes that data protection policies and model understanding play a key
role in order to build safe AI products, escape human errors and data
biases, increase AI explainability and diminish the amount of misleading
information.

16 VOLUME x, 2022

	Introduction
	The problem
	Our contribution
	Content of the paper

	Background and related work
	Detecting known patterns
	Statistical approaches
	Learning approaches
	Other viewpoints

	Datasets
	Libra bank dataset
	Synthetic datasets
	Underlying graph
	Anomalies
	Edge Attributes

	Node features
	Reduced egonet
	Random walk features

	Anomaly detection algorithms
	Experimental results
	Results on Libra dataset
	Results on synthetic data
	Discussion

	Conclusions and further work
	REFERENCES
	Bogdan Dumitrescu
	Andra Băltoiu
	Ştefania Budulan

