
Classification with Incoherent Kernel
Dictionary Learning

Denis C. ILIE-ABLACHIM
Faculty of Automatic Control and Computers,

University Politehnica of Bucharest
denis.ilie ablachim@upb.ro

Bogdan DUMITRESCU
Faculty of Automatic Control and Computers,

University Politehnica of Bucharest
bogdan.dumitrescu@upb.ro

Abstract—In this paper we present a new method of classifica-
tion based on Dictionary Learning (DL). The main contribution
consists of a kernel version of incoherent DL, derived from its
standard linear counterpart. We also propose an improvement
of the AK-SVD algorithm concerning the representation update.
Our algorithms are tested on several popular databases of
classification problems.

Index Terms—dictionary learning, kernel, incoherence, classi-
fication

I. INTRODUCTION

Dictionary Learning (DL) is a representation learning
method used in signal processing and machine learning that
aims to find a sparse representation for input data organized
as vectors. DL has many applications starting from simple
ones like image denoising, inpainting or signal reconstruction
and going to coding, clustering or classification. For a given
set of samples, Y , represented by a matrix of N columns
(signals) of size m, we intend to find a dictionary D of size
m × n and a sparse representation X of size n × N such
that good sparse representations Y ≈ DX are obtained. The
representation is based on linear combinations of the columns
of the dictionary D, named atoms. The DL problem can be
formulated as follows

minD,X ‖Y −DX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖ = 1, j = 1 : n,
(1)

where ‖·‖0 represents the 0-pseudo-norm and s is the sparsity
level. More precisely, each signal is represented as a linear
combination of at most s atoms.

There are several successful DL methods, including K-SVD
[1], MOD [2]; improved methods and variations of the DL
problem including regularization and coherence reduction are
presented in [3]. All these algorithms are iterative and in
most of them an iteration consists of computing the sparse
representations X with fixed dictionary D and then updating
the atoms successively, possibly together with the coefficients
with which an atom contributes to representations. Of special
interest is the Approximate version of K-SVD problem (AK-
SVD) [4], which does not seek exact optimality for both

This work was supported by a grant of the Romanian Ministry of Education
2and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-
2019-3248, within PNCDI III.

an atom and its representation coefficients, but optimizes
them successively. AK-SVD has lower complexity than other
algorithms and gives similar end results in most DL problems.

In this paper we present a new perspective on a classification
problem via dictionary learning with incoherent atoms. This
problem was first introduced in [5], where the solution is
computed by optimizing the whole dictionary. We introduce
a new optimization method in AK-SVD style, in which the
dictionary D is updated atom by atom. Our contribution is to
extend the problem by projecting the signals in a nonlinear
space, as linear spaces can hinder classification performance.
To this purpose, we use kernel representations in order to better
quantify the similarity between signals. Another contribution
is to introduce a new update rule for the coefficients repre-
sentations, by taking into consideration only the most recent
atoms in all computations; this improvement can lead to the
increase of classification accuracy.

The contents of this paper is as follows. In Section II-A
we introduce the classification problem and the principle of
its solution via DL. Section II-B presents an incoherent DL
algorithm suited for classification. Section II-C contains our
main contribution: the kernel version of the incoherent DL
algorithm and the new update rule for representations. Section
III is dedicated to experimental results, obtained by running
simulations on three publicly available datasets, namely YaleB,
AR Face and Caltech 101.

II. CLASSIFICATION WITH DICTIONARY LEARNING

A. Standard Dictionary Learning classification

The representation learning approach (1) can be also used
in classification problems. Considering a set of feature vectors
classes Y = [Y1, . . . , Yc, . . . , YC], where the columns of
matrix Yc ∈ Rm×Nc are the vectors belonging to class c,
we intend to learn a specific dictionary, Dc, for each class.
For a given test signal y ∈ Rm the classification is achieved
by finding the dictionary with the smallest residual of the
representation:

c = argmini=1:C‖y −Dixi‖, with ‖xi‖0 ≤ s. (2)

B. Incoherent Dictionary Learning classification

In order to improve the performance of the classification,
the problem can be extended by adding discriminative power

Algorithm 1: Incoherent AK-SVD Dictionary Update
Data: current dictionary D ∈ Rm×n

complementary dictionary D̄ ∈ Rm×(n−1)
representation matrix X ∈ Rn×N

Result: updated dictionary D
1 Compute error E = Y −DX
2 for j = 1 to n do
3 Modify error: F = EIj + djXj,Ij
4 Update atom: dj = FX>j,Ij − 2γD̄D̄>dj
5 Normalize atom: dj ← dj ‖dj‖
6 Update representation: X>j,Ij = F>dj
7 Recompute error: EIj = F − djXj,Ij

to each dictionary. By this, we intend to maintain a good
sparse representation for its own class while achieving a bad
representation for the other classes. A solution for this problem
was presented in [6] where a penalty term was added to the
DL problem, transforming it into

min
Di,Xi

C∑
i=1

‖Yi −DiXi‖2F + γ

C∑
i=1

∑
l 6=i

∥∥D>i Dl

∥∥2
F
. (3)

The second term introduces an incoherence measure between
pairs of dictionaries from different classes. By this formulation
we intend to project dictionaries into quasi-orthogonal spaces,
while retaining most of their representation ability.

The DL problem (3) can be approximately solved by an ap-
proach similar to Approximated K-SVD [1]. The optimization
consists of an iterative process in which the representations
Xi and the dictionaries Di are alternately optimized while all
other variables are fixed. The representations are computed
with Orthogonal Matching Pursuit [7] as usual in DL, since
the penalty term does not depend on Xi. The dictionaries
are updated sequentially, atom by atom. Let us assume that
we optimize atom dj from dictionary Di. The optimization
problem (3) becomes

min
dj

∥∥Fij − djXj,Ij
∥∥2
F

+ 2γ
∑
l 6=i

∥∥D>l dj∥∥2F , (4)

where Fij =
[
Yi −

∑
` 6=j d`x

>
`

]
Ij

is the representation error

when all atoms but dj are considered and Ij denotes the
indices of the nonzero positions on the jth row of Xi (those
containing the coefficients of dj in the representations). The
solution has been previously presented in [6] and is

dj ← Fijx− 2γD̄D̄>dj , (5)

where we have denoted x = Xj,Ij and D̄ =
[D1, . . . , Di−1, Di+1, . . . , DC] is the complementary dictio-
nary to the current one.

The atom update operations of the IDL algorithm based
on AK-SVD are summarized in Algorithm 1 [3, Alg.4.2].
Note that the representations are also updated and that the
representation error is manipulated efficiently.

C. Incoherent Kernel Dictionary Learning classification

In order to evade the linear character of the representation,
kernel dictionary learning (KDL) was introduced in [8], [9].
Through this method, the space of signals is extended to a
nonlinear feature vector space. We associate with each signal
y the feature vector ϕ(y), where ϕ(y) is a nonlinear function.
The dictionary D is also extended to a nonlinear space by
ϕ(Y)A, where A contains the coefficients of the dictionary.
So, the DL problem (1) is transformed into

minA,X ‖ϕ(Y)− ϕ(Y)AX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖aj‖ = 1, j = 1 : n.
(6)

The problem becomes computationally tractable by the use of
Mercer kernels, which allows the substitution of scalar product
of feature vectors with the computation of a kernel function
k(x, y) = ϕ(y)>ϕ(x). Denoting Kil = ϕ(Yl)

>ϕ(Yi), the
incoherent DL problem (3) is transformed into the Incoherent
Kernel Dictionary Learning (IKDL) problem

min
Ai,Xi

C∑
i=1

‖ϕ(Yi)− ϕ(Yi)AiXi‖2F + γ

C∑
i=1

∑
l 6=i

∥∥A>l KilAi
∥∥2
F
.

(7)
Using a similar alternate optimization technique and similar
notations, the kernel correspondent of problem (4) for opti-
mizing an atom aj is

min
aj

∥∥ϕ(Yi)Fij − ϕ(Yi)ajXj,Ij
∥∥2
F

+

2γ
∑
l 6=i

∥∥A>l Kilaj
∥∥2
F
.

(8)

In order to solve this optimization problem, we compute the
partial derivatives with respect to atom aj as follows:

∂
∥∥ϕ(Yi)

(
Fij − ajx>

)∥∥2
F

∂aj
= −2Kii

(
Fij − ajx>

)
x (9)

and
∂
∥∥A>l Kilaj

∥∥2
F

∂aj
= 2K>ilAlA

>
l Kilaj . (10)

By using (9) and (10), the minimum in (8) is obtained when

−Kii

(
Fij − ajx>

)
x+ 2γ

∑
l 6=i

K>ilAlA
>
l Kilaj = 0 (11)

and so the solution is

aj =

Kii‖x‖2 + 2γ
∑
l 6=i

K>ilAlA
>
l Kil

−1KiiFijx. (12)

The resulting atom is the solution of a m×m linear system.
Given the complexity of the problem, we intend to find a more
convenient approximation.

We note that, given the atom aj , the optimal associated
representation in (8) is X>j,Ij = F>ijKiiaj , like in the kernel

AK-SVD algorithm (the penalty does not contain the repre-
sentation). We insert this optimal representation in (8) and
obtain

min
aj

∥∥ϕ(Yi)
(
Fij − aja>j KiiFij

)∥∥2
F

+ 2γ
∥∥∥K̂iaj

∥∥∥2
F
, (13)

where

K̂i =
[
K>i1A1 . . . K>i,i−1Ai−1 K

>
i,i+1Ai+1 . . . K>iCAC

]>
.

(14)
Expressing the Frobenius norm via its trace form, the new

objective from (13) becomes

Tr
[(
Fij − aja>j KiiFij

)>
Kii

(
Fij − aja>j KiiFij

)]
+

2γTr
[
a>j K̂i

>
K̂iaj

]
.

(15)

After direct transformations and neglecting the terms that do
not depend on aj , we are left with the minimization of

− a>j
(
KiiFijF

>
ijKii − 2γK̂i

>
K̂i

)
aj . (16)

The solution is the eigenvector corresponding to the maximum
eigenvalue of the matrix

H = KiiFijF
>
ijKii − 2γK̂i

>
K̂i. (17)

Since this is again a high complexity operation, we make a
single iteration of the power method on the matrix H . So,
given the current atom a

(k)
j (at iteration k), the new atom is

a
(k+1)
j = Ha

(k)
j = KiiFijx− 2γK̂i

>
K̂ia

(k)
j , (18)

followed by atom normalization. We have denoted again x =
Xj,Ij . The atom update (18) is the kernel version of (5).

The atom update operations of the IKDL algorithm are
summarized in Algorithm 2 for a single dictionary (hence the
index i has disappeared). We also propose an improvement
with respect to the structure of Algorithm 1. We note that
the representation update uses the most recent version of the
current atom; however, the error matrix F is computed using
the previous version of the atom. By introducing the most
recent version of the atom in the error, the representation
update becomes(

X>j,Ij

)(k+1)

= F>Kaj = E>IjKaj +
(
X>j,Ij

)(k)
. (19)

Due to normalization, we have a>j Kaj = 1 and so this
product has disappeared from the second term above. We
name Updated-error AK-SVD (UAK-SVD) this version of the
algorithm and we will compare it with the usual AK-SVD
update. The difference is only in the representation updates,
step 6 of Algorithms 1 and 2.

For the classification scheme we need only the reconstruc-
tion errors from equation (2). For the kernel version, the
classification of a signal y results from

c = argmini=1:C‖ϕ(y)−ϕ(Yi)Aixi‖, with ‖xi‖0 ≤ s, (20)

Algorithm 2: Incoherent Kernel UAK-SVD Dictionary
Update

Data: kernel matrix K ∈ RN×N
current dictionary A ∈ RN×n
complementary dictionary K̂ ∈ R(N−1)×N

representation matrix X ∈ Rn×N
Result: updated dictionary D

1 Compute error E = I −AX
2 for j = 1 to n do
3 Modify error: F = EIj + ajXj,Ij
4 Update atom: aj = KFXj,Ij − 2γK̂>K̂aj

5 Normalize atom: aj ←
(
a>j Kaj

) 1
2

6 Update representation: X>j,Ij ← E>IjKaj +X>j,Ij
7 Recompute error: EIj = F − ajXj,Ij

which leads to

c = argmini=1:Ck(y, y) + x>i A
>
i KiAixi − 2k(y, Yi)Aix,

with ‖xi‖0 ≤ s.
(21)

Here, as well as in the IKDL algorithm, the representations
are computed with Kernel OMP [8].

III. EXPERIMENTS

In this section we present the main results obtained with the
Incoherent Kernel Dictionary Learning algorithm. The datasets
used in the simulation are YaleB [10], AR Face [11] and
Caltech 101 [12].

For the evaluation step, each dataset is independently used
and was provided in [13]. We measure performance through
classification accuracy, training time and testing time. All
the algorithms were developed in Matlab 2018a, on a laptop
with 3.5GHz Intel CPU and 16 GB RAM memory. The
execution time and accuracy are reported as the average over
the 3 best results. For the methods that require the use of a
kernel function, we used two types of kernels: radial basis
function kernel (k(x, y) = exp

−||x−y||22
2σ2) and polynomial

kernel (k(x, y) = (x>y + α)β). For the kernel problems, we
have tried different numerical forms in our simulations. We
have chosen the final form based on the best results from
these simulations. The code for the proposed algorithms is
available at https://github.com/denisilie94/Incoherent-Kernel-
Dictionary-Learning.

YaleB Database is organized into two sub-datasets, ac-
cording to the extended and cropped images. The dataset is
composed of 16128 images of 38 human subjects under 9
poses and 64 illumination conditions. During the simulation
step only the extended dataset was used, including 2414 face
images of 38 persons. For the training and testing step the
images per subject were split in half. The dimension of the
feature vectors is 504.

AR Face Database is a face dataset which contains over
4000 color images corresponding to 126 different people (70
men and 56 women). The images were taken having a frontal

https://github.com/denisilie94/Incoherent-Kernel-Dictionary-Learning
https://github.com/denisilie94/Incoherent-Kernel-Dictionary-Learning

view with different facial expressions, illumination conditions
and occlusions. For the experimental phase a set of 2600
images of 50 females and 50 male subjects are extracted.
For each subject, 20 images were used for training and 6 for
testing.

Beside the face recognition task, an object recognition task
was attempted in the simulations. For this we used Caltech
101 Database. The dataset includes 9,144 images from 102
classes (101 common object classes and a background class).
The number of samples in each category varies from 31 to
800. In the experiments, 30 samples per category were used
for training, while the rest are used for testing.

During the simulations we performed tests with dictionaries
of different sizes (40, 60, 80 and 100 atoms) having a sparsity
constraint equal to 10%, 20%, 50% and 80% of the number of
atoms. Taking into account the training time and the resulted
classification accuracy, we chose to use only dictionaries with
40 atoms and a sparsity constraint of 20. Increasing sparsity
can improve the results, but this will also affect the training
time. All tests were performed on 10 DL iterations. For a
larger number of iterations the improvement in accuracy is
insignificant. We set the hyperparameters of the optimization
problem following a grid search: γ ∈ [0.01, 0.1, 0.5, 1, 2, 4, 6],
σ ∈ [0.5, 1, 2, 4, 5, 6, 8, 10], α ∈ [0.5, 1, 2, 4] and β ∈ [2, 3]. In
the case of all datasets, for the IDL problem we used γ = 4,
while for the IKDL problem γ was set to 0.1. Regarding the
kernel functions, we used the following parameters: σ = 4,
α = 2 and β = 2 for YaleB dataset; σ = 8, α = 4 and β = 2
for AR Face dataset; and σ = 5, α = 4 and β = 2 for Caltech
101 dataset.

The main results are summarized in Tables I, II for classifi-
cation with incoherent DL; Tables III, IV contain results with
IKDL and the RBF kernel; Tables V and VI contain results
with IKDL and polynomial kernel. As we can see, the results
vary depending on the chosen algorithm. The UAK-SVD
method usually improves the classification accuracy, although
sometimes only slightly. Regarding the kernel extension, the
introduced nonlinearity does not always insure an improve-
ment, as we can see for YaleB dataset, but there is a strong
improvement regarding the execution time. In the case of
YaleB dataset, the training time decreased by 10 times, while
for the AR Face dataset the training is done 25 times faster.
The best improvement is visible for the Caltech 101 dataset,
where training time has been reduced 200 times. The execution
time is reduced due to the small size of the dictionaries in the
kernel version. This property is valid only for cases where
the signal size is much larger than the number of signals per
class; for example, in the YaleB case, the dictionary of a class
has size 504× 40 in the IDL approach, but size only 32× 40
in IKDL; it is thus remarkable that the accuracy loss is so
small when kernels are used. This property is also valid for
the other datasets, where we have signals of size 540 for AR
Face dataset and 3000 for Caltech 101 dataset.

In order to better understand the classification problem we
compute the reconstruction error (figures 1, 2 and 3) and
the discriminative term (figures 4, 5 and 6). Based on the

exploitation of the two terms we can easily see that the
reconstruction error achieves good representation for YaleB
and AR Face datasets, while the discriminative term does not
produce the quasi-orthogonality of the dictionaries. For these
problems, the classification obtains good results by taking γ
small enough so that the discriminative term does not have
an important weight in the objective function. On the other
side, the Caltech 101 dataset does not achieve a separable
error reconstruction, but the discriminative term is stronger
and thus classification can be performed.

TABLE I
AK-SVD INCOHERENT DICTIONARY LEARNING

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 82.9 [sec] 20.6 [sec] 94.00%
AR Face 558 [sec] 27 [sec] 93.22%
Caltech101 14332 [sec] 329 [sec] 67.30%

TABLE II
UAK-SVD INCOHERENT DICTIONARY LEARNING

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 87.5 [sec] 20.8 [sec] 94.11%
AR Face 560 [sec] 26.3 [sec] 93.33%
Caltech101 14367 [sec] 329 [sec] 66.98%

TABLE III
AK-SVD INCOHERENT KERNEL DICTIONARY LEARNING

(RBF KERNEL)

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 6.8 [sec] 23.8 [sec] 93.88%
AR Face 19.5 [sec] 25.3 [sec] 93.42%
Caltech101 62.4 [sec] 403 [sec] 70.67%

TABLE IV
UAK-SVD INCOHERENT KERNEL DICTIONARY LEARNING

(RBF KERNEL)

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 7.2 [sec] 24.7 [sec] 94.05%
AR Face 19.2 [sec] 25.3 [sec] 93.50%
Caltech101 62.7 [sec] 402 [sec] 70.12%

TABLE V
AK-SVD INCOHERENT KERNEL DICTIONARY LEARNING

(POLYNOMIAL KERNEL)

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 9.0 [sec] 26.2 [sec] 94.00%
AR Face 24.5 [sec] 30.5 [sec] 94.83 %
Caltech101 73.3 [sec] 430 [sec] 70.83%

TABLE VI
UAK-SVD INCOHERENT KERNEL DICTIONARY LEARNING

(POLYNOMIAL KERNEL)

XXXXXXXXDataset
Perf. Train. time Test. time Accuracy

YaleB 9.0 [sec] 27.1 [sec] 94.07%
AR Face 24.5 [sec] 30.3 [sec] 94.83%
Caltech101 73.6 [sec] 428 [sec] 71.46%

Fig. 1. ‖ϕ(y)− ϕ(Yi)Aix‖2F (YaleB - UAK-SVD IKDL)

Fig. 2. ‖ϕ(y)− ϕ(Yi)Aix‖2F (AR Face - UAK-SVD IKDL)

Fig. 3. ‖ϕ(y)− ϕ(Yi)Aix‖2F (Caltech101 - UAK-SVD IKDL)

IV. CONCLUSIONS

In this paper we have extended the family of dictionary
learning algorithms for classification problems. We have pre-
sented a modified version of AK-SVD in which the most

Fig. 4.
∥∥A>

l KilAi

∥∥2
F

(YaleB - UAK-SVD IKDL)

Fig. 5.
∥∥A>

l KilAi

∥∥2
F

(AR Face - UAK-SVD IKDL)

Fig. 6.
∥∥A>

l KilAi

∥∥2
F

(Caltech101 - UAK-SVD IKDL)

recent version of an atom is used in all respects in the
representation update. We have proposed a kernel version of
incoherent AK-SVD that can improve classification perfor-
mance by increasing the separation of dictionaries dedicated

to different signal classes. The experimental results confirm
the good behavior of our algorithms, especially in terms of
complexity.

REFERENCES

[1] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse representation.
IEEE Transactions on signal processing, 54(11):4311–4322, 2006.

[2] K. Engan, S.O. Aase, and J.H. Husoy. Method of optimal directions
for frame design. In IEEE Int. Conf. Acoustics Speech Signal Proc.,
volume 5, pages 2443–2446, 1999.

[3] Bogdan Dumitrescu and Paul Irofti. Dictionary learning algorithms and
applications. Springer, 2018.

[4] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient Implementation
of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit.
Technical Report CS-2008-08, Technion Univ., Haifa, Israel, 2008.

[5] Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro. Classifica-
tion and clustering via dictionary learning with structured incoherence
and shared features. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 3501–3508. IEEE,
2010.

[6] Paul Irofti and Bogdan Dumitrescu. Regularized algorithms for dictio-
nary learning. In 2016 International Conference on Communications
(COMM), pages 439–442. IEEE, 2016.

[7] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinkulam Sambamurthy
Krishnaprasad. Orthogonal matching pursuit: Recursive function approx-
imation with applications to wavelet decomposition. In Proceedings of
27th Asilomar conference on signals, systems and computers, pages 40–
44. IEEE, 1993.

[8] Hien Van Nguyen, Vishal M Patel, Nasser M Nasrabadi, and Rama Chel-
lappa. Design of non-linear kernel dictionaries for object recognition.
IEEE Transactions on Image Processing, 22(12):5123–5135, 2013.

[9] J.J. Thiagarajan, K.N. Ramamurthy, and A. Spanias. Multiple Kernel
Sparse Representations for Supervised and Unsupervised Learning.
IEEE Trans. Image Proc., 23(7):2905–2915, July 2014.

[10] Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Krieg-
man. From few to many: Illumination cone models for face recognition
under variable lighting and pose. IEEE transactions on pattern analysis
and machine intelligence, 23(6):643–660, 2001.

[11] Aleix M Martinez. The ar face database. CVC Technical Report24,
1998.

[12] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual
models from few training examples: An incremental bayesian approach
tested on 101 object categories. In 2004 conference on computer vision
and pattern recognition workshop, pages 178–178. IEEE, 2004.

[13] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Label consistent k-svd:
Learning a discriminative dictionary for recognition. IEEE transactions
on pattern analysis and machine intelligence, 35(11):2651–2664, 2013.

	Introduction
	Classification with Dictionary Learning
	Standard Dictionary Learning classification
	Incoherent Dictionary Learning classification
	Incoherent Kernel Dictionary Learning classification

	Experiments
	Conclusions
	References

