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Abstract—Separable, or Kronecker product, dictionaries pro-
vide natural decompositions for 2D signals, such as images. In
this paper, we describe a highly parallelizable algorithm that
learns such dictionaries which reaches sparse representations
competitive with the previous state of the art dictionary learning
algorithms from the literature but at a lower computational cost.
We highlight the performance of the proposed method to sparsely
represent image and hyperspectral data, and for image denoising.

Index Terms—sparse representations, dictionary learning, sep-
arable dictionaries, parallel computing, distributed computing

I. Introduction
Dictionary learning (DL) [1] aims at finding a suitable

overcomplete basis, or dictionary, that best represents a given
dataset: training signals vectorized as columns in Y . Based
on this training matrix we find the dictionary D that produces
representations X such that Y ≈ DX . We mandate sparsity
in the representations [2] which implies that a sample y, uses
only a few columns, also called atoms, from D encoded in
the representations. Popular algorithms include Orthogonal
Matching Pursuit (OMP) [3] for sparse representations and
Approximate K-SVD (AK-SVD) [4] or more recent adaptive
stable techniques [5] for dictionary learning.

Often, samples have an intrinsic structure that is lost or
weakened with standard DL approaches. For example, in
images and videos, pixels and voxels have strong vicinity based
connections leading to certain patterns exploited by standard
signal processing tools. Also, network or graph generated
signals suffer from the same loss of structure and recent DL
work [6], [7] has shown that recovering the graph structure
through the learning process can significantly improve results.

C. Rusu was supported by a grant of the Ministry of Research, Innovation
and Digitization, CNCS/CCCDI-UEFISCDI, project number PN-III-P1-1.1-
TE-2019-1843, within PNCDI III. P. Irofti was supported by two grants of the
Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI,
project number PN-III-P1-1.1-PD-2019-0825 and project number PN-III-P2-
2.1-PED-2019-3248, within PNCDI III.

Thus, existing algorithms were adapted to separable variants
that maintain the data structure by training separate dictionar-
ies for each dimension [8]–[10] but also exploit the structure
in order to gain better and faster approximations [11], [12].
Previous work introduced parallel/distributed DL algorithms

but these addressed non-separable problems [13], [14] and in-
troduced significant computational overhead [15]. We continue
this pursuit and propose a new parallel algorithm that provides
a fast and distributed (with little communication overhead)
separable DL solution based on the Tensor MOD (TMOD)
approach [16].
In the separable dictionary setting, for a bidimensional (2D)

signal Y we now want to represent it using two dictionar-
ies Y ≈ D1XDT

2 . The approximation quality is identical
‖Y −D1XDT

2 ‖F = ‖vecY − (D2 ⊗D1)vecX ‖2, if the one-
dimensional (1D) dictionary is set as D = D2 ⊗ D1. Here
vecM denotes the column-order vectorization of matrix M ,
‖.‖F the Frobenius norm and ⊗ is the Kronecker product.
Throughout the paper we treat the 2D case, but the results
shown can be easily generalized to multiple dimensions [17].
In the context of DL, separable or pairwise dictionaries are

used to represent 2D signals such as images. The data is now
stored as a set of N samples Yk ∈ R

m×m, k = 1 : N . Small
dictionaries D1 ∈ R

m×n1 (the left dictionary) and D2 ∈ R
m×n2

(the right dictionary) cater to the 2D data such that they
produce the correspondingXk ∈ R

n1×n2 sparse representations
that are s ∈ N∗ sparse (the matrix Xk has at most s nonzero
elements). We are now ready to formulate the pairwise DL
optimization problem as

minimize
D1 , D2 , X

N∑
k=1
‖Yk −D1XkD

T
2 ‖

2
F

subject to ‖Xk ‖0 ≤ s, k = 1 : N,

‖d1i ‖2 = 1 and ‖d2j ‖2 = 1,

(1)

where i = 1 : n1, j = 1 : n2, d1i and d2j denote the normalized



atoms of the two dictionaries. Existing algorithms [11], [12]
exploit the separable formulation such that D2 ⊗D1 is never
explicitly computed.

II. Separable Dictionary Learning
The earliest work on separable dictionaries, either in the

context of dictionary learning or compressed sensing for im-
ages, was introduced in [18] and [19]. Recently, there has been
revived interested in the separable dictionary learning problem,
both theoretically and from an algorithmic perspective.

SeDiL [8] was among the first to attack the separable DL
problem by employing a highly complex gradient descent
algorithm on smooth Riemannian submanifolds. Keeping the
data structure intact, thus multi-dimensional, has lead to many
tensor-based algorithms [9], [16], [20], [21] that employ vari-
ous CANDECOMP/PARAFAC (CP) decomposition tactics to
update pairs of atoms or even whole dictionaries at once. We
note that, with the exception of [16], [20], [21] and [22],
tensor methods choose not to exploit the separable structure
directly. The STARK algorithm [23] implicitly enforces Kro-
necker structure on the dictionary by solving a regularized
convex relaxation of the hard rank-1 tensor recovery problem
while TeFDiL [22] is a factorization based approach which
imposes explicitly the Kronecker structure and finds the small
dictionaries Di .
MOD [24] solves the DL problem by viewing Y = DX

as a least squares problem (LS) where the variable is X in
the representation stage, and D in the dictionary update stage.
TMOD is the n-dimensional adaptation of the MOD [18], [25],
[26] algorithm. Given tensor T ∈ RI1×···×In and matrix M ∈

RJ×Ik , let T(k) be the mode-k matricization and let ⊗k be
the mode-k product such that (T ⊗k M )(k) =MT(k). TMOD
writes the n-dimensional DL problem as Y = X ⊗1 D1 ⊗2
D2 ⊗3 · · · ⊗nDn, where Y is the tensor containing N samples
of m1 × · · · × mn dimensions each and Di ∈ R

mi×ni is the
dictionary associated to dimension i. The right-hand variables
are updated one at a time by solving a large LS problem.
Similarly, the K-SVD algorithm has also been extended to the
tensor setting [26]. As convolutional dictionaries are able to
capture local structure in image data, separable convolutional
dictionary learning was also introduced recently [27], [28].

In the sparse representation stage, these algorithms usually
employ the 2D-OMP algorithm [11]. The complexity reduction
brought by the separable version and its equivalence to 1D
OMP [3] is thoroughly demonstrated in [12] and [11].

In coordinate descent fashion, TKSVD [16] simultaneously
updates atom pairs i, j while keeping the other atoms fixed
which can lead to an increase in the overall error (1) as
shown in [12]. PairAK-SVD [12] is a direct non-tensor AK-
SVD adaptation to the separable scenario which modifies the
residual to update only one atom at a time.

STARK [23], SuKro [9], and [22] also extended TMOD
by writing D as a sum of Kronecker products. Thus, in
(1) we would write D =

∑R
r=1 D

(r)
2 ⊗ D(r)1 . Dictionary

update is also residual based but it involves a rank-R problem
solved via ADMM [29]. Earlier results in [20] are similar to

SuKro and also propose a non-separable version based on
CP decomposition. The latest in this line of work is a DL
algorithm that learns sums of R Kronecker products of K = 2
terms at a time [30]. Finally, the work in [22] described an
online approach to the separable dictionaries learning problem.
While we focused on algorithmic developments, we also

mention theoretical efforts made to understand the behavior
and limits of these procedures like the local identifiability
of the Kronecker-structured dictionaries [22], [31], [32] and
sample complexity analysis of these dictionaries [33]–[35]
that was shown to be significantly lower than for unstructured
dictionaries [36]. Recently, matrix factorization were used to
provide guarantees for global optimality [37].

III. The proposed algorithm

In this section, we describe the proposed solution to the
separable dictionary learning problem. We aim to solve the
problem in (1) in three steps: 1) with D1 and D2 fixed we
update all Xk using the 2D-OMP algorithm (alternatively,
other sparse recovery algorithms can be used in this step
but we choose an OMP approach due to its advantageous
numerical properties); 2) for D1 and all Xk fixed we compute
the optimal D2, the minimizer of the objective function in (1);
and 3) analogous to the previous step, we find the optimal
D1. We choose 2D-OMP over 1D-OMP in order to keep
memory usage low and avoid vectorization operations that
need to take place during the 1D sparse recovery algorithms.
In this paper, we do not focus on developing new 2D sparse
approximation methods but our contribution lies in developing
new, efficient, ways of finding the two dictionaries D1 andD2.
Our dictionary update rules are based on the following result
and corollary.
Proposition 1 (Optimal D2 update): Let D1 be fixed and

denote Zk = D1Xk with all Xks fixed, then the minimizer
of the objective function in (1) is

(D?
2 )

T =W2(

N∑
k=1

ZT
k Zk)

−1(

N∑
k=1

ZT
k Yk). (2)

Proof. Ignore for now the norm constraints and the objective
function of (1) develops into

N∑
k=1

ZkD
T
2 − Yk

2
F
=( N∑

k=1
ZT

k Zk)
1/2DT

2 − (

N∑
k=1

ZT
k Zk)

−1/2(

N∑
k=1

ZT
k Yk)

2

F

+ C.

(3)
Here C = tr(

∑N
k=1 Y

T
k
Yk − (

∑N
k=1 Y

T
k
Zk)(

∑N
k=1 Z

T
k
Zk)

−1

(
∑N

k=1 Z
T
k
Yk)) does not depend on D2. Since the mini-

mization above reduces to a standard least squares prob-
lem, the minimizer (assuming

∑N
k=1 Z

T
k
Zk has full rank,

which happens almost always as N � m) is (D?
2 )

T =

(
∑N

k=1 Z
T
k
Zk)

−1(
∑N

k=1 Z
T
k
Yk). Let W2 be a n2 × n2 diagonal

matrix such that D?
2 W2 has normalized columns, then the

optimal updates are D?
2 ← D?

2 W2 and Xk ← XkW
−1
2 ,



Algorithm 1 Distributed Separable Dictionary Learning
Require: Y ∈ Rm×m×N , D1,2 ∈ R

m×n1,2 , and s, p,K ∈ N∗

Result: D1,D2, and X ∈ Rn1×n2×N (distributed at the nodes)
Setup: Split as evenly as possible the N data points {Yi}

p
i=1

and distribute initial D1,2 among the p processing nodes
Main loop, for 1, . . . ,K:
1. Each node i computes the s-sparse representations Xk

for all its data points Yk and its partial sums Pi =
∑

k TkT
T
k

and Ri =
∑

k TkY
T
k
;

2. Master node accumulates Pi and Ri from all nodes i,
sums P =

∑p
i=1 Pi and R =

∑p
i=1 Ri , and then computes

D1 = P −1RW1, according to Corollary 1. Master node
distributes D1 to all p nodes;
3. With the freshly received D1, each node i computes the
s-sparse representations Xk for all its data points Yk and
its partial sums Mi =

∑
k Z

T
k
Zk and Ni =

∑
k Z

T
k
Yk ;

4. Master node accumulates Mi and Ni from all nodes i,
sums M =

∑p
i=1 Mi and N =

∑p
i=1 Ni , and then computes

D2 = M−1NW2, according to Result 1. Master node
distributes D2 to all p nodes.

without affecting the sparsity pattern (the objective function is
minimized with the LS solution and the normalization diagonal
cancels in the products Xk(D

?
2 )

T ) . �

Corollary 1 (Optimal D1 update): Analogously to Re-
sult 1, denoting and fixing Tk = XkD

T
2 we have that

the minimizer of the objective function in (1) is given by
D?

1 = (
∑N

k=1 YkT
T
k
)(
∑N

k=1 TkT
T
k
)−1W1, where W1 is a diago-

nal matrix of size n1×n1 chosen such that D?
1 has normalized

columns and update Xk ←W −1
1 Xk for all k . �

Denoting G1 = DT
1 D1 and G2 = D2D

T
2 , we note that we

will compute ZT
k
Zk = XT

k
G1Xk and TkT

T
k
= XkG2X

T
k
.

We describe the full proposed distributed alternating optimiza-
tion method in Algorithm 1. All dictionary updates guarantee
a monotonic decrease in the objective function value but the
same is not true about 2D OMP, in general. Algorithm 1
is an explicit, efficient parallel/distributed implementation of
the classic TMOD approach for separable dictionary learning.
In Figure 1, we provide a thread communication diagram
that shows the initialization process and one iteration of the
proposed method. We describe a scenario with p nodes but,
for simplicity, show the communication/computation behavior
only for two nodes highlighting also the dimensions of the
matrices that are transferred – which do not depend on the size
of the dataset N . In general, dictionary learning algorithms can
be trivially parallelized in the sparse approximation step, i.e.,
the N sparse solutions Xk are computed separately. The issue
is that each Xk of size m × m needs to be transferred/copied
to a central node for the dictionary update step. For our
method, just four m×m matrices for each processing node are
transferred and therefore the communication cost is lowered
considerably, i.e., O(m2p) instead of O(m2N). As we will show
experimentally, this allows the overall proposed algorithm to
scale very well with the number of processing nodes p.

Remark 1 (Learning orthonormal dictionaries): If we im-
pose in (1) the additional constraint that we are learning
orthonormal dictionaries, i.e., n1 = n2 = m, DT

1 D1 =
D1D

T
1 = Im and DT

2 D2 = D2D
T
2 = Im, then the least

squares problem in Result 1 becomes an orthogonal Procrustes
problem [38] whose solution is given by a singular value
decomposition (for both D1 and D2). We call Algorithm 1 -
Orthonormal, the same approach as Algorithm 1 but with the
Procrustes updates for the dictionaries. Orthonormal dictionar-
ies also improve the numerical complexity of the algorithm.
The update formulas for the dictionaries become:D?

1 = U1V
T

1
where (

∑N
k=1 Y

T
k
D2Xk)(

∑N
k=1 XkX

T
k
) = U1Σ1V

T
1 is given

by the singular value decomposition (SVD) and D?
2 = U2V

T
2

where (
∑N

k=1 Y
T
k
D1Xk)(

∑N
k=1 X

T
k
Xk) = U2Σ2V

T
2 again by

the SVD. Furthermore, 2D-OMP is no longer necessary as the
sparse representations are computed as Xk = Ts(D

T
1 YkD2),

where Ts is an operator that keeps only the s largest (in
absolute value) entries of the input matrix. �

Remark 2 (On the computational complexity of Algo-
rithm 1): We will highlight in the results section that the
proposed method has a running time competitive against pre-
viously proposed algorithms from the literature. For simplicity
let us assume that n1 = n2 = m. We focus on the dictionary
updates for a single iteration of Algorithm 1 (in total we
perform K iterations). First, notice that computing D?

1 and
D?

2 takes about 26
3 m3+12smN+8m2N+4m3N operations: the

first term includes the two Cholesky decompositions ( 2
3 m3),

then the four back-substitutions (4m3) used to solve the least
squares problems for symmetric positive definite matrices with
multiple right-hand sides and the two matrix-matrix multipli-
cation to compute G1 and G2 (4m3), the second term is the
cost of building all ZT

k
Zk and TkT

T
k

(8smN) and the cost
of computing all the sparse and non-sparse matrix products
(4smN and 4m3N , respectively) and then summing them up
(8m2N) needed in Result 1 and Corollary 1. Because in general
that N � m we see that the computational complexity is
dominated by the construction of the matrix product sums.
From a computational perspective, tensor methods (TMOD,

TKSVD, etc.) generally use a form of CP decomposition
with alternating LS. Note that computing the inverse in the
vectorized case costs O(m6) operations, while in the 2D
separable case it only takes O(m3).
Furthermore, note that the proposed approach is highly

parallelizable: computing the N matrix products summations
is distributed among multiple computing units (either CPUs
or GPUs) with minimal cross-communication (only a partial
summation matrix of size m ×m needs to be communicated).
The same holds for the calculations of representations Xk

which can be done locally at each processing unit without the
need of communicating them explicitly. �

Remark 3 (Generalization to n dimensions): Our result can
be easily extended to more than two dimensions. We earlier
described how TMOD generalizes MOD in n dimensions. Our
method also holds in n dimensions using the property of the
mode-k product: Y = X ⊗1 D1 ⊗2 D2 ⊗3 · · · ⊗n Dn ⇐⇒



[P1]m×m, [R1]m×m [P2]m×m, [R2]m×m

[D1]m×n1 [D1]m×n1

[M1]m×m, [N1]m×m [M2]m×m, [N2]m×m

[D2]m×n2 [D2]m×n2

masternode 1 node 2

[D1]m×n1, [D2]m×n2, [Y1]m×m× N
p

[D1]m×n1, [D2]m×n2, [Y2]m×m× N
p

:initialization:

:iteration:
tim

e

Fig. 1. Assuming the overall dataset is split in p parts, we show the thread communication diagram with a master and two of the processing nodes highlighting
the distributive nature of the proposed algorithm. We explicitly show all the dimensions of the matrices being communicated.

TABLE I
Average running times (seconds) for methods in Figure 2.

Method n = 8 n = 16
s = 6 s = 8 s = 6 s = 8

proposed, general (p = 1) 21 22 33 38
proposed, ortho (p = 1) 18 20 18 22
PairAK-SVD 140 171 205 266
SuKro 23 27 47 56
TeFDiL 8 10 19 24
AK-SVD 10 14 16 21

Y(k) = DkX(k)(Dn ⊗ Dn−1 ⊗ · · · ⊗ D1)
T . Denoting with T

the fixed dictionaries in the parenthesis we arrive at Corollary
1. �

IV. Simulation results 1

In this section we showcase the results achieved by the
proposed algorithms (orthonormal and general Kronecker dic-
tionaries) and compare with the state of the art.
First, in Figures 2 and 3 we show the RMSE achieved for

various patches sizes m, dictionary sizes n, and dataset sizes
N . Table I shows the running times of these methods (proposed
methods run on p = 1 nodes) averaged over 5 rounds.
As we are learning a relatively low number of dictionary
parameters (roughly O(mn)) we choose N on the order of
103 and 104 image patches. The proposed general approach
equals the performance of PairAK-SVD, but at a fraction of

1Matlab & Python code at https://github.com/pirofti/ParallelSeparableDL

the computational cost (on average ×7 speedup as compared to
PairAK-SVD and ×1.7 against SuKro). TeFDiL is always faster
than the general approach but the results are on average slightly
worse. We would like to mention that the dictionary update
step of TeFDiL involves large matrix-matrix multiplication
(both matrices of size m2 × N) and solving linear systems of
size m2×m2 with N right-hand sides, both of which are highly
parallelizable in Matlab (in fact, running Matlab with the flag
-singleCompThread leads to a 33-50% increase in the running
time of TeFDiL). Therefore, one might say that TeFDiL
is already “half-paralellized” (sparse representations are still
computed sequentially). While TeFDiL is easy to parallelize
(in a multi-thread fashion), the dictionary update step needs all
the sparse representations X explicitly in the same processing
node, so the communication cost in a distributed system would
be high, as compared with our proposed approach where only
small matrices need to be communicated (see Remark 2). The
proposed orthogonal approach performs worse (of course due
to the orthogonality constraints) but it is even faster – note
that we report running time for 100 iterations but the proposed
orthogonal approach converges much faster, mostly before 20
iterations. For perspective, we show the error achieved by an
unstructured dictionary via AK-SVD [39] which is faster than
the proposed method in its serial (p = 1) implementation. We
now explore the speed-up benefits of the proposed method.

We have touted the efficient parallel implementation of Al-
gorithm 1 and now in Table II we show the speedups achieved
for both proposed approaches for various m × m patches.
The datasets, for each m ∈ {8,16,32}, have N = 128000,
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Fig. 2. Mean and standard deviation RMSE over 100 iterations with 5 random realizations of datasets. From left to right: 1) each dataset consists of N = 9216
randomly chosen non-overlapped 8 × 8 image patches from a set of 12288 patches, n = 8 and s = 6; 2) analogous to 1) for s = 8; 3) analogous to 1) for
n = 16 and s = 6; 4) analogous to 3) for s = 8.
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Fig. 3. Mean and standard deviation RMSE against the size n of the dictionaries over 5 random realizations of datasets. From left to right: 1) each dataset
consists of N = 9216 randomly chosen non-overlapped 8 × 8 image patches from a set of 12288 patches, s = 6; 2) analogous to 1) for s = 8; 3) each dataset
consists of N = 2304 randomly chosen non-overlapped 16 × 16 image patches from a set of 3072 patches, s = 8; 4) analogous to 3) for s = 16.

TABLE II
Speedup achieved by the parallel implementation of the proposed

algorithms (m = n). For ortho s = m, general s = 8.

Method m
Number of processors (p)

1 2 4 6 8 12

proposed
ortho

8 217 sec ×2 ×4.3 ×5.6 ×8 ×10.3
16 86 sec ×2 ×3.9 ×5.4 ×7.8 ×10.8
32 46 sec ×2 ×3.8 ×5.1 ×7.1 ×10.6

proposed
general

8 440 sec ×0.6 ×1.1 ×1.4 ×2 ×2.6
16 450 sec ×1.5 ×3.1 ×3.8 ×5.1 ×5.4
32 469 sec ×2 ×3.4 ×4 ×4.6 ×5

N = 32000, and N = 8000 patches, respectively. For the
proposed orthogonal case we scale almost precisely with the
number of cores while for the proposed general case the
speedup is less impressive. The latter observation is also due to
the OMP implementation from the Python scikit-learn toolkit,
which covers almost all the running time of the algorithm. We
tested on an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
with 16 GB of RAM and 16 cores.

In Table III we reproduced the denoising experiments de-
scribed in [12] with the proposed methods: we use 512 × 512
images from the USC-SIPI database [40] and denoise via error

driven OMP with ε = 1.15σnoise
√

m; if the target error is not
met, OMP is stopped when sparsity s = m/2 is reached. The
results are averaged over 5 realizations of noise. We recorded
negligible differences between realizations. This is standard
practice in the literature [41].
For training we used N = 4000 patches of 8× 8 pixels with

which we learned m = 8 by n = 16 dictionaries with target
sparsity s = 6. The chosen images and noise levels are often
used in the literature [8], [40], [41]. Denoising is performed on
all N = 255025 overlapping patches and results are compared
to the original image and measured in terms of peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) [42].
Finally, in Table IV we show DL execution times and

speedups for the proposed methods on the Indian Pine 220-
layered 614× 1848 hyperspectral image from [43]. The layers
are divided among the p CPUs (in total N = 3913140 image
patches) and the m = 8 by n = 8 dictionaries are trained for
100 iterations with s = 16. Even in this large scale experiment
we observe scaling behavior similar to the results in Table II.

V. Conclusions
In this paper we proposed two highly parallelizable and

distributed algorithms for separable dictionary learning based



TABLE III
Average denoising PSNR(dB) and SSIM for standard images over 5 realizations. Best results are in boldface (PSNR) or underlined (SSIM).

σnoise / PSNR Method lena barbara boat peppers house
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

5 / 34.1557
m = 8, n = 16, general 37.724 0.9358 33.045 0.9376 34.017 0.9031 36.372 0.9059 37.384 0.9277

m = n = 8, ortho 38.381 0.9407 37.895 0.9611 36.977 0.9352 37.354 0.9194 38.904 0.9459
PairAK-SVD [12] 37.912 0.9367 37.118 0.9588 35.987 0.9210 36.420 0.9066 38.038 0.9380

10 / 28.1322
m = 8, n = 16, general 35.132 0.9041 31.126 0.9044 32.276 0.8622 34.367 0.8705 34.912 0.8898

m = n = 8, ortho 35.237 0.9048 33.949 0.9280 33.334 0.8738 34.553 0.8730 35.316 0.8944
PairAK-SVD [12] 35.185 0.9046 33.720 0.9260 33.183 0.8724 34.4076 0.8708 35.116 0.8927

20 / 22.1105
m = 8, n = 16, general 31.988 0.8557 28.387 0.8400 29.723 0.7858 31.915 0.8323 32.275 0.8532

m = n = 8, ortho 31.911 0.8548 29.833 0.8599 29.832 0.7857 31.836 0.8313 32.096 0.8507
PairAK-SVD [12] 32.006 0.8563 30.027 0.8634 29.980 0.7906 31.930 0.8323 32.308 0.8535

30 / 18.5868
m = 8, n = 16, general 29.877 0.8174 26.921 0.7823 27.886 0.7252 30.116 0.8031 30.159 0.8211

m = n = 8, ortho 29.848 0.8165 27.396 0.7909 27.834 0.7230 30.055 0.8021 30.012 0.8186
PairAK-SVD [12] 29.937 0.8182 27.637 0.7973 27.989 0.7281 30.093 0.8024 30.250 0.8220

50 / 14.1505
m = 8, n = 16, general 27.358 0.7552 24.211 0.6695 25.486 0.6410 27.570 0.7531 27.296 0.7609

m = n = 8, ortho 27.358 0.7550 24.449 0.6780 25.459 0.6397 27.513 0.7520 27.230 0.7592
PairAK-SVD [12] 27.375 0.7557 24.604 0.6842 25.518 0.6421 27.559 0.7527 27.302 0.7614

TABLE IV
Speedups achieved for Hyperspectral Experiments.

Number of processors (p)
Method 1 4 8 10 12 16
ortho 20532 sec ×3.8 ×7.6 ×9.4 ×10.8 ×12.4
general 325030 sec ×2.1 ×5.5 ×8 ×9.1 ×10.5

on least squares dictionary updates. We show experimentally
that the algorithms scale excellently with the number of cores
or processing nodes and are competitive with the current
state of the art separable dictionary learning methods for
sparse representations. This approach opens the possibility of
learning dictionaries given hundreds of thousands or millions
of training signals in a reasonable amount of time.
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