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Abstract—In this paper we present new methods of anomaly
detection based on Dictionary Learning (DL) and Kernel Dic-
tionary Learning (KDL). The main contribution consists in the
adaption of known DL and KDL algorithms in the form of
unsupervised methods, used for outlier detection. We propose
a reduced kernel version (RKDL), which is useful for problems
with large data sets, due to the large kernel matrix. We also
improve the DL and RKDL methods by the use of a random
selection of signals, which aims to eliminate the outliers from
the training procedure. All our algorithms are introduced in
an anomaly detection toolbox and are compared to standard
benchmark results.

I. INTRODUCTION

Dictionary Learning (DL) is a representation learning
method which aims to find a sparse representation for a set of
signals Y , represented as a matrix with N columns (signals)
of size m. The representation is achieved by computing a
dictionary D of size m × n and a sparse representation X
of size n × N such that a good approximation Y ≈ DX
is obtained. Most applications with dictionary learning are in
problems with image denoising, inpainting, signal reconstruc-
tion, clustering or classification.

In this paper we present novel methods for unsupervised
learning, in particular outlier detection, using DL. The main
idea is based on finding a suited dictionary, which is capable
of well representing most signals in a dataset, while the outlier
signals representation should obtain large errors. Considering
the number of outliers significantly lower than the rest of the
signals, we expect the dictionary optimization to generally
follow the directions of the normal signals. Our developments
cover both the standard and the nonlinear (kernel) DL.

Anomaly detection (outlier detection) is the identification
of a subset of signals that have a different representation in
relation to the rest of the data. There are several successful
anomaly detection methods, such as Isolation Forest (IFor-
est) [1], Minimum Covariance Determinant (MCD) [2], [3],
One-class SVM detector (OCSVM) or Principal Component
Analysis (PCA) Outlier Detector [4].

There are also several successful sparse coding algorithms
used for anomaly detection. An idea was presented in [5],
[6]. These methods consider the data representation as a
joint sparse linear combination of training data. By following
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this technique, the authors try to achieve a direct correlation
between all the available signals. Naturally, non-correlated
signals are considered as being anomalies. Another example
is given in [7], where the anomalies are identified in terms of
deviation from a trained model. This method tries to achieve
good sparse representation for jointly distributed signals, while
the other independent signals should be isolated. An overview
of DL can be found in [8].

The paper is organized as follows. Section II introduces a
natural way of solving outlier detection problems using DL
algorithms. Section III formulates a new DL algorithm, called
Selective Dictionary Learning, which aims to improve the
anomaly detection algorithm by randomly selecting signals
for the training procedure in order to discourage dictionary
adaptation to outliers. In Section IV we present a reduced
kernel version of the DL problem and its Selective form.
Section V contains the experimental results, obtained by
running tests on multivariate data and comparing the results
with those of methods available in a Python toolkit for outlier
detection.

II. ANOMALY DETECTION VIA DICTIONARY LEARNING

The DL problem is formulated as following

min
D,X

‖Y −DX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖ = 1, j = 1 : n,

(1)

where ‖·‖0 represents the 0-pseudo-norm and s is the sparsity
level.

The standard dictionary learning problem can be solved by
using simple strategies. In order to overcome the nonconvexity
and the huge dimension of the problem, the optimization
procedure is organized in two steps. This method is also known
as DL by Alternate Optimization. In this way, the problem
is divided in two subproblems: sparse coding and dictionary
update. By alternating these two stages for a given number
of iterations, the method can obtain good local solutions. An
iteration consists of computing the sparse representation X ,
while the dictionary D is fixed, and then successively updat-
ing the dictionary columns, named atoms, while the sparse
representation is fixed. For sparse coding we use Orthogonal
Matching Pursuit (OMP) [9]. For the dictionary update we use
the Approximate version of the K-SVD algorithm (AK-SVD)



[10], [11], which optimizes the atoms and their representations
successively.

A simple strategy for anomaly detection is to compute the
representation error

E = Y −DX (2)

and identify the signals that obtain bad representations. The
score of signal i is simply the norm ‖ei‖ of the i-th column
of E. The largest the error norm, the more likely that signal
is an outlier. The underlying assumption is that signals that
are alike can be better represented by the dictionary designed
when solving (1). However, the dictionary size n and the
sparsity level s must be taken smaller than usual, otherwise the
representation may be uniformly good for all signals and even
outliers can be well represented. A small dictionary favors
good representations for signals that are similar, tuning the
atoms for this purpose; a bad representation of the outliers
has little effect on the objective of (1), since they are few.
This trade-off is naturally obtained during the optimization.

Of course, since sparse representation is linear, similarity
and dissimilarity can be thought in terms of direction. Normal
signals belong to a small number of low dimensional sub-
spaces and the outliers lie on very different subspaces. This
is a model that is appropriate for some anomaly detection
problems but not suited for others.

III. SELECTIVE DICTIONARY LEARNING

In the standard DL algorithm, during the training procedure,
both stages could be affected by the presence of outliers in
the training dataset. The problem of anomaly detection can
be solved more easily if we could train the dictionary only
on normal data. By neglecting the outliers from the training
dataset, we expect to obtain higher representation errors for
anomalies. However, this is not possible, since we do not know
which signals are normal and which are outliers.

To describe our strategy for eliminating most of the outliers
from the training process, we introduce two new parame-
ters in the DL algorithm: train perc (training percent) and
train drop prec (training dropout percent). The first one
represents the percent of data that are used during the sparse
coding stage. At each iteration, we first apply a random
sampling on the training data and only train perc% of
the signals are used for sparse coding. In the dictionary
update stage, we further drop off train drop perc% of the
signals, namely those having the worst representations (largest
representation errors). Although the first random selection can
eliminate both normal signals and outliers from a training
iteration, the representation of normal signals is less likely
to suffer, since there are still signals in the current training
set that are similar to them. On the contrary, outliers are
more likely to lack good proxies and so their representation
will worsen. The second random selection, that of signals
with bad representation, aims to directly remove outliers from
the training process. The dictionary will be updated to better
represent the signals that already have good representations.
Hence, again, the outliers representation will worsen, but the

representation of normal signals not present in the current
selection will not be significantly altered.

The DL problem can be formulated by the use of a zero
extended permutation matrix P that is modified at each stage
and has the role of randomly selecting the signals:

min
D,X

‖Y P −DX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖dj‖ = 1, j = 1 : n.

(3)

IV. REDUCED KERNEL DICTIONARY LEARNING

Linear spaces can usually hinder good representations. In
order to overcome this problem, the standard DL can easily be
extended to a nonlinear space. This method is called Kernel
Dictionary Learning (KDL) and was introduced in [12] and
[13]. By this, we reproject each signal y to a nonlinear space
φ(y), where φ(·) is a nonlinear function. The dictionary D is
also extended to φ(Y )A, where A is a matrix with unknown
coefficients, taking the role of dictionary. The KDL problem
is formulated as

min
A,X

‖ϕ(Y )− ϕ(Y )AX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N

‖ϕ(Y )aj‖ = 1, j = 1 : n.

(4)

The KDL problem can be solved similarly to the DL problem
(1) if Mercer kernels are used, which allows the substitution of
a scalar product of feature vectors ϕ(x)>ϕ(y) with a kernel
function k(x,y). However, the problem becomes difficult
when using large datasets, due to the large kernel matrix
ϕ(Y )>ϕ(Y ) that results. The size of the kernel matrix scales
linearly with the volume of the data, which leads to a large
volume of memory. Thus this strategy might not be tractable
for problems with large datasets.

In order to overcome this limitation we extend the dictio-
nary D to a smaller nonlinear space by ϕ(Ȳ )A, where Ȳ
represents a small batch of signals from the original dataset.
Permuting the signals such that Y = [Ȳ Ỹ ], we can write

ϕ(Ȳ ) = [ϕ(Ȳ ) ϕ(Ỹ )︸ ︷︷ ︸
ϕ(Y )

]

[
I
0

]
︸ ︷︷ ︸

P

. (5)

The KDL problem becomes

min
A,X

‖ϕ(Y )− ϕ(Ȳ )AX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N∥∥ϕ(Ȳ )aj

∥∥ = 1, j = 1 : n.

(6)

From (5) and (6) we obtain a new optimization problem

min
A,X

‖ϕ(Y )(I − PAX)‖2F . (7)

We denote
E = I − PAX (8)

the representation error and

F =

I − P
∑
i6=j

aix
T
i


Ij

(9)



the representation error without the contribution of the current
atom aj ; by Ij we denote the set of signal indices to
whose representation aj contributes. In order to solve the
optimization problem (6), we update the current atom while
the other atoms and the representation are fixed. Removing
the index j for a lighter notation, the atom update problem
becomes

min
a

∥∥ϕ(Y )
(
F − Pax>

)∥∥2

F
. (10)

Using the trace form of the squared Frobenius norm, the
objective function becomes

Tr
[(
F> − xa>P>

)
ϕ>(Y )ϕ(Y )

(
F − Pax>

)]
=

= Tr
[
F>KF

]
− 2x>F>KPa + ‖x‖2a>P>KPa.

(11)
We compute the partial derivative of the objective function
with respect to the current atom

∂(·)
∂a

= 2‖x‖2 P>KP︸ ︷︷ ︸
K̄

a− 2P>K︸ ︷︷ ︸
K̂>

Fx (12)

and so the optimal atom is

a =
(
‖x‖2K̄

)−1
K̂>Fx. (13)

The atom is normalized after each update; note that the
normalizing factor is

(
a>K̄a

) 1
2 in order to obtain ‖aj‖ = 1,

as required by the original DL problem.
We call Reduced Kernel Dictionary Learning using a Sam-

pled kernel (RKDL-S) the method solving problem (6) and
summarize its update step in Algorithm 1. The optimal repre-
sentation from step 6 is computed by setting to zero the partial
derivative of (11) with respect to x. The sparse representation
step, not listed here, is made using the Kernel OMP algorithm
[13].

Algorithm 1: RKDL-S

Data: reduced kernel matrix K̄ ∈ Rp×p
partial kernel matrix K̂ ∈ RN×p
current dictionary A ∈ RN×n
representation matrix X ∈ Rn×N

Result: updated dictionary A
1 Compute error E = I − PAX
2 for j = 1 to n do
3 Modify error: F = EIj + PajXj,Ij
4 Update atom: aj =

(
‖x‖22K̄

)−1
K̂>FXj,Ij

5 Normalize atom: aj ← aj/
(
a>j K̄aj

) 1
2

6 Update representation: X>j,Ij ← F>K̂aj
7 Recompute error: EIj = F − PajXj,Ij

RKDL-S achieves good results, but nevertheless in the
training process there are chances to use abnormal signals,
by the use of random sampling extraction. This fact can lead
to a decrease in accuracy and performance. A better strategy
that could overcome this problem would be to use a trained
dictionary instead of Ȳ signals. This can be achieved by using

a dictionary, denoted D̄, obtained from the linear cases in the
previous sections. The corresponding optimization problem is

min
A,X

‖ϕ(Y )− ϕ(D̄)AX‖2F
s.t. ‖x`‖0 ≤ s, ` = 1 : N∥∥ϕ(D̄)aj

∥∥ = 1, j = 1 : n.

(14)

We name it RKDL-D, the last letter indicating the use of
dictionary instead of sampled signals. In order to update the
current atom, we rewrite the new optimization problem as
follows

min
aj

∥∥∥∥∥∥ϕ(Y )− ϕ(D̄)
∑
i 6=j

aix
>
i − ϕ(D̄)ajx

>
j

∥∥∥∥∥∥
2

F

. (15)

Expressing the Frobenius norm via its trace form, (15) be-
comes

min
aj

Tr

ϕ>(Y )−
∑
i 6=j

xia
>
i ϕ
>(D̄)− xja

>
j ϕ
>(D̄)

ϕ(Y )− ϕ(D̄)
∑
i 6=j

aix
>
i − ϕ(D̄)ajx

>
j

 .
(16)

After the substitution of scalar products with the kernel
function and negleting the terms that do not depend on aj
the final optimization problem is

min
aj

Tr

2
∑
i 6=j

xia
>
i K(D̄, D̄)ajx

>
j + xja

>
j K(D̄, D̄︸ ︷︷ ︸

K̄D̄

)ajx
>
j

−2K(Y , D̄)︸ ︷︷ ︸
K̂D̄

ajx
>
j

 .
(17)

Algorithm 1 can be easily modified for solving (17), fol-
lowing the same line of reasoning as above. In particular, the
atom update relation is

aj =
(
‖x‖22K̄D̄

)−1
(K̂>D̄ + K̄D̄R)Xj

and the representation update is

X>j ← (K̂D̄ −RK̄D̄)aj ,

where we denoted K̄D the reduced kernel matrix k(D̄, D̄),
K̂D the partial kernel matrix k(Y , D̄) and R = X>A> −
Xja

>
j the transposition representation product with respect

to the current atom aj . The new method is summarized in
Algorithm 2.

Following the same strategy presented in Section III, the
RKDL methods can easily be adapted to their Selective form.
The Selective Reduced Kernel Dictionary Learning (SRKDL)
problem is solved as the previous one, by introducing two
additional steps for the randomly selection of signals, one for
the kernel OMP subproblem and the second one for the matrix
coefficients update subproblem. In both cases the random
sampling selection is made according to the entire data set
(including the abnormal signals).



Algorithm 2: RKDL-D

Data: reduced kernel matrix K̄D̄ ∈ Rp×p
partial kernel matrix K̂D̄ ∈ RN×p
current dictionary A ∈ RN×n
representation matrix X ∈ Rn×N

Result: updated dictionary A

1 Compute sum S =

n∑
i=1

X>i a
>
i

2 for j = 1 to n do
3 Modify sum: R = S −Xja

>
j

4 Update atom:
aj =

(
‖x‖22K̄D̄

)−1
(K̂>

D̄
+ K̄D̄R)Xj

5 Normalize atom: aj ← aj/
(
a>j K̄D̄aj

) 1
2

6 Update representation: X>j ← (K̂D̄ −RK̄D̄)aj
7 Recompute error: S = R + Xja

>
j

V. EXPERIMENTS

In this section we present the main results obtained with the
proposed DL algorithms for anomaly detection. All algorithms
have been developed in Python and have been introduced in
the framework of the PyOD [14] anomaly detection toolbox.
For the evaluation, all vectors of a dataset were normalized
and were split into two sets: 60% for training and 40% for
testing. Each experiment was repeated ten times independently
with random splits. In terms of performance, we measure
and compute the mean of the area under the receiver oper-
ating characteristic (ROC) curve and the precision @ rank n
score. We used 16 real-world datasets from different domains,
more precisely those gathered in ODDS (Outlier Detection
DataSets)1 and used as benchmark in PyOD, and 2 synthetic
datasets.

All the algorithms were implemented in Python on a
Desktop PC with Ubuntu 20.04 as operating system, having
a processor of base frequency of 2.90 GHz (Max Turbo
Frequency 4.80 GHz) and 80GB RAM memory (although a
16 GB RAM memory is sufficient). During the experiments,
ten different rounds were run. The execution time, receiver
operating characteristic value and precision n score were
measured based on the average of all rounds. For the nonlinear
versions we used two different kernels: radial basis function
kernel k(x,y) = exp (−γ||x− y||22) and polynomial kernel
k(x,y) = (γx>y + α)β . The hyperparameters of the kernel
functions were chosen according to a grid search. Based
on the average results on all the datasets, they were set as
following: γ = 1/m, α = 1 and β = 3, for the synthetic
datasets, while for the rest we used γ = 0.1/m for the rbf
kernel and γ = 10/m for the polynomial kernel; we remind
that m is the size of a signal. All the implementations are
available at https://github.com/denisilie94/pyod-dl, including
the two synthetic datasets.

1http://odds.cs.stonybrook.edu/

The first synthetic dataset was generated based on two
different sparse coded sets of signals. Using two dictionaries,
Di, the dictionary for inliers, and Do, the dictionary for
outliers, two sets of signals were generated having the sparsity
constraint s = 4. For the numerical experiment we set the
number of inliers Ni = 512 and number of outliers No = 64,
while the dictionary size are ni = 50 and no = 400. The
signals size was set to m = 64. For the outliers signals we used
an overcomplete dictionary, since its representation ability is
much more diverse than in the case of the dictionary for
inliers. The second dataset consists of random samples from
two normal (Gaussian) distributions, of different mean and
standard deviation. We kept the same number of normal and
abnormal signals of size 64 as in the previous dataset. The two
Gaussian distributions were generated so that the distribution
of normal signals clearly overlaps with the distribution of
abnormal signals. More exactly the inlier mean and variance
are µi = 0 and σi = 0.5, while the outliers parameters are
µo = −0.1 and σo = 0.45.

For the DL methods we used small dictionaries of size
n = 50, while the sparsity constraint was s = 5. All the
dictionaries were trained using 20 iterations using the AK-
SVD method. For the SDL method the train perc = 0.7 and
train drop perc = 0.4. For the RKDL method, the size of
the matrices Ȳ from (6) and D̄ from (14) was set to 10% of
the number of signals. The selective version of RKDL used the
parameters train perc = 0.8 and train drop perc = 0.3.

The results show the good behaviour of our algorithms in
detecting outliers via sparse coding. In terms of performance,
the DL methods obtain competitive results. The main results
are summarized in Tables I, III for the public PyOD methods
and in Tables II, IV for the DL methods. In all the tables
we highlight the best three results from both sets of methods
(PyOD and DL) taken together. For the synthetic datasets, we
noticed that the PyOD methods do not obtain good results.
The DL methods obtain better classification results for the
dataset generated with sparse coding and the dataset with
Gaussian distribution. For ODDS datasets, the overall results
are predominantly better for PyOD methods. However, there
are a few datasets where DL methods stand out as being
better. For example, for the cardio dataset, the DL methods
achieve the third place in top, while for the ionosphere and
satellite datasets it occupies the second and third place. An
interesting dataset is vertebral where the DL methods are the
best, occupying all three positions of the top.

In general, the SDL method achieve better results than the
DL method, but this is not always true. Depending on how
the random selection of signals is made, there are chances
that abnormal signals to be used during the training procedure.
This is possible for the datasets with a very high percentage
of outliers or small datasets. The same statement is valid for
the KDL vs SKDL comparison. On the other hand, comparing
the standard methods with the kernel methods, we notice that
the second ones obtain better results. Moreover, the selective
strategy improves the invariance of dictionaries to representing
abnormal signals. The RKDL-D and SRKDL-D methods often

https://github.com/denisilie94/pyod-dl


Data Samples Dim. Out. Perc. ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA
dl out 576 64 11.1111 0.84496 0.52271 0.58823 0.48706 0.50225 0.56253 0.59419 0.8734 0.5106 0.49162

2gauss out 576 64 11.1111 0.00633 0 0.19077 0.47946 0.28293 0 0.26359 0.00015 0.36793 0.54262
arrhythmia 452 274 14.6018 0.76875 0.78382 0.77807 0.82193 0.7996 0.7861 0.77866 0.77897 0.78116 0.7815

cardio 1831 21 9.6122 0.56917 0.81003 0.58673 0.8351 0.91844 0.72363 0.57357 0.82715 0.93484 0.95038
glass 214 9 4.2056 0.79507 0.84125 0.87261 0.73887 0.74977 0.85076 0.8644 0.79006 0.63236 0.6747

ionosphere 351 33 35.8974 0.92476 0.89718 0.87304 0.56144 0.85411 0.92674 0.87535 0.95566 0.84192 0.7962
letter 1600 32 6.25 0.87825 0.78306 0.86605 0.59268 0.64011 0.87656 0.85935 0.8074 0.61182 0.5283

lympho 148 18 4.0541 0.91097 0.96731 0.97528 0.99569 0.99288 0.9745 0.97709 0.91125 0.97587 0.98467
mnist 7603 100 9.2069 0.78153 0.84041 0.72046 0.57419 0.80673 0.84813 0.71608 0.86661 0.85289 0.85266
musk 3062 166 3.1679 0.18444 1 0.52626 0.99998 0.99984 0.79857 0.52867 0.99997 1 0.99995

optdigits 5216 64 2.8758 0.46674 0.7692 0.44336 0.87325 0.70608 0.37076 0.45004 0.3979 0.49972 0.50856
pendigits 6870 16 2.2707 0.68776 0.89307 0.45953 0.92381 0.94964 0.74865 0.46975 0.83439 0.93031 0.93525

pima 768 8 34.8958 0.67938 0.65781 0.62345 0.69995 0.67798 0.70781 0.62705 0.67528 0.6215 0.64811
satellite 6435 36 31.6395 0.57137 0.74942 0.55717 0.75811 0.6937 0.68364 0.55727 0.80304 0.66224 0.59884

satimage-2 5803 36 1.2235 0.81896 0.99922 0.45701 0.98042 0.99384 0.9536 0.45774 0.99593 0.9978 0.98218
vertebral 240 6 12.5 0.42615 0.43309 0.41658 0.32625 0.39276 0.38166 0.40811 0.39158 0.44308 0.40269
vowels 1456 12 3.4341 0.96059 0.92221 0.94252 0.67267 0.75966 0.968 0.94096 0.80761 0.78021 0.60267

wbc 378 30 5.5556 0.90473 0.92005 0.93254 0.95163 0.93073 0.93662 0.93488 0.92102 0.93189 0.91587
TABLE I

ROC PERFORMANCE - PYOD METHODS

Data DL SDL RKDL-S RKDL-D SRKDL-S SRKDL-D
rbf poly rbf poly rbf poly rbf poly

dl out 0.89666 0.85336 0.36259 0.36424 0.39653 0.37279 0.32207 0.34155 0.3849 0.36028
2gauss out 0.91278 0.90274 0.05688 0.02432 0.0165 0.01193 1 0.82143 0.00569 0.0036
arrhythmia 0.77057 0.77194 0.68557 0.63535 0.70723 0.76356 0.72746 0.72333 0.72112 0.78032

cardio 0.70023 0.72884 0.63584 0.92797 0.60367 0.82092 0.69322 0.93747 0.63524 0.89624
glass 0.67484 0.64841 0.77257 0.65649 0.80463 0.68711 0.79033 0.68143 0.62142 0.72519

ionosphere 0.93401 0.93923 0.87097 0.62494 0.88993 0.80313 0.85409 0.60376 0.8578 0.77142
letter 0.82366 0.81978 0.72686 0.33016 0.74923 0.41022 0.72863 0.3328 0.71789 0.42632

lympho 0.91635 0.93615 0.54727 0.711 0.7846 0.95522 0.60362 0.82363 0.82788 0.9102
mnist 0.81029 0.79723 0.66476 0.80017 0.54424 0.57414 0.6443 0.71678 0.5917 0.57642
musk 0.88574 0.89346 0.69204 0.75747 0.55197 0.70492 0.77949 0.9375 0.70581 0.82653

optdigits 0.40227 0.4084 0.36615 0.41572 0.40347 0.56437 0.39185 0.43933 0.48264 0.61547
pendigits 0.62745 0.63382 0.8356 0.91127 0.78032 0.88282 0.83539 0.92798 0.84152 0.91862

pima 0.56365 0.55959 0.60599 0.64188 0.6131 0.65217 0.62009 0.6357 0.63752 0.65449
satellite 0.65351 0.64655 0.65338 0.66762 0.64236 0.59866 0.77197 0.68252 0.77682 0.69671

satimage-2 0.59438 0.55493 0.85817 0.97076 0.90414 0.92801 0.98003 0.96482 0.98159 0.9646
vertebral 0.48265 0.46904 0.39465 0.41046 0.48752 0.39953 0.46184 0.40483 0.50182 0.38861
vowels 0.77689 0.80236 0.80882 0.519 0.78853 0.66121 0.86525 0.52215 0.84647 0.678

wbc 0.81705 0.84737 0.67586 0.88776 0.71915 0.9167 0.81133 0.89594 0.73305 0.90848
TABLE II

ROC PERFORMANCE - DL METHODS

Data Samples Dim. Out. Perc. ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA
dl out 576 64 11.1111 0.47533 0.11883 0.1958 0.10082 0.07764 0.15684 0.19525 0.47469 0.11109 0.0999

2gauss out 576 64 11.1111 0 0 0 0.10901 0.03221 0 0.004 0 0.02137 0.10618
arrhythmia 452 274 14.6018 0.38076 0.45385 0.42297 0.51108 0.49992 0.44637 0.43343 0.39952 0.4614 0.46129

cardio 1831 21 9.6122 0.23743 0.42966 0.169 0.44761 0.49186 0.33227 0.15409 0.42084 0.50112 0.609
glass 214 9 4.2056 0.17023 0.07262 0.14762 0 0.07262 0.07262 0.14762 0 0.17262 0.07262

ionosphere 351 33 35.8974 0.84415 0.77489 0.70558 0.32951 0.64743 0.86021 0.70634 0.88065 0.70005 0.57286
letter 1600 32 6.25 0.38009 0.23969 0.36419 0.07152 0.08828 0.33117 0.36411 0.19327 0.15096 0.08747

lympho 148 18 4.0541 0.44834 0.75167 0.75167 0.84667 0.87667 0.75167 0.75167 0.56833 0.75167 0.75167
mnist 7603 100 9.2069 0.3555 0.40231 0.32986 0.11882 0.30346 0.42043 0.33429 0.3462 0.39619 0.38461
musk 3062 166 3.1679 0.05075 1 0.22297 0.97832 0.98069 0.2733 0.16955 0.98889 1 0.97994

optdigits 5216 64 2.8758 0.00602 0 0.02445 0.2194 0.0271 0 0.02335 0 0 0
pendigits 6870 16 2.2707 0.08125 0.23974 0.06579 0.29793 0.35505 0.09844 0.06529 0.08928 0.32866 0.31865

pima 768 8 34.8958 0.51929 0.48378 0.44802 0.54238 0.50233 0.54133 0.45552 0.49625 0.47035 0.49429
satellite 6435 36 31.6395 0.39023 0.57978 0.39016 0.56903 0.55766 0.49945 0.38929 0.68452 0.53455 0.47844

satimage-2 5803 36 1.2235 0.21305 0.93759 0.0555 0.6939 0.8775 0.38087 0.05551 0.64813 0.93556 0.80408
vertebral 240 6 12.5 0.06005 0.03381 0.06439 0.00714 0.05337 0.02381 0.05059 0 0.02381 0.02262
vowels 1456 12 3.4341 0.57102 0.36427 0.3224 0.12974 0.19602 0.50929 0.35506 0.2186 0.27907 0.13636

wbc 378 30 5.5556 0.30604 0.48064 0.51879 0.58166 0.50879 0.49518 0.51879 0.45771 0.51249 0.47673
TABLE III

PRECISION @ N PERFORMANCES - PYOD METHODS



Data DL SDL RKDL-S RKDL-D SRKDL-S SRKDL-D
rbf poly rbf poly rbf poly rbf poly

dl out 0.54116 0.53812 0.01536 0.02597 0.01429 0.02937 0.00385 0.01629 0.01087 0.01447
2gauss out 0.51047 0.49212 0.00333 0 0 0 1 0.78568 0 0
arrhythmia 0.42828 0.42783 0.32057 0.31022 0.35562 0.42643 0.38116 0.37517 0.37499 0.45478

cardio 0.30468 0.30867 0.22022 0.5416 0.19782 0.35779 0.24374 0.58545 0.1814 0.50126
glass 0.1369 0.04762 0.12262 0.09762 0.11429 0.07262 0.14762 0.03929 0.125 0.09762

ionosphere 0.8081 0.81393 0.73023 0.43417 0.78044 0.61622 0.70715 0.42508 0.72037 0.58191
letter 0.27955 0.26227 0.1753 0.01572 0.2086 0.03195 0.15485 0.02421 0.16185 0.02761

lympho 0.49833 0.45666 0.125 0.12833 0.25833 0.42833 0.22333 0.265 0.26667 0.465
mnist 0.37567 0.36151 0.23029 0.35623 0.13266 0.12771 0.18196 0.28904 0.16703 0.13247
musk 0.4075 0.37901 0.12873 0.23353 0.10472 0.17828 0.21692 0.68521 0.26918 0.0882

optdigits 0.00963 0.00696 0.0111 0 0.02303 0.04896 0.00474 0 0.0437 0.1143
pendigits 0.09973 0.09568 0.16584 0.28128 0.10907 0.27757 0.1476 0.27513 0.16232 0.25404

pima 0.41686 0.39683 0.43692 0.4744 0.44025 0.48196 0.45952 0.48992 0.4757 0.49287
satellite 0.46056 0.45341 0.47054 0.51423 0.45615 0.4217 0.61256 0.54732 0.62188 0.55516

satimage-2 0.07119 0.04584 0.09132 0.64813 0.33605 0.38399 0.58768 0.64744 0.56207 0.62129
vertebral 0.09294 0.07273 0.06198 0.05927 0.10508 0.02143 0.05048 0.03214 0.07903 0.00667
vowels 0.28151 0.30329 0.22516 0.10201 0.21783 0.18607 0.25828 0.06196 0.22259 0.1181

wbc 0.41909 0.36207 0.18477 0.55319 0.24709 0.52414 0.27334 0.5301 0.15626 0.51664
TABLE IV

PRECISION @ N PERFORMANCES - DL METHODS

improve the results. In general, the trained dictionary, D, is
better adapted for the representation of the normal signals.
However, it is likely that the trained dictionaries contain atoms
that are beneficial in the nonlinear representation of all signals,
including the outliers.

The execution time of DL methods is usually larger than
that of the PyOD methods. For example, for the musk dataset,
which is among the largest, DL and SDL take about 6 seconds,
i.e., not much more than MCD, which needs about 4 seconds;
RKDL algorithms take between 9 and 11 seconds, while
SRKDL variant are slightly faster, with 7-10 seconds. The
other PyOD algorithms are at least 10 times faster than the
methods presented in the article.

VI. CONCLUSIONS

In this paper we have presented a novel unsupervised
method for outlier detection, based on Dictionary Learning and
Kernel Dictionary Learning. We have introduced a reduced
kernel DL version that is suitable for problems with large
datasets. The kernel reduction technique is based on choosing
a small sample of signals from the original dataset, which
will further be used for the nonlinear extension. Another
way to represent the kernel is to use a dictionary initially
trained in with the standard DL algorithm. Both methods
are accompanied by improved versions based on a random
selection of the data used in the training procedure. This
ensures invariance in the representation of normal signals,
while the capabilities of the dictionaries for the representation
of abnormal signals decrease.

Based on these results, we demonstrated that sparse learning
can easily isolate the outliers from the normal signals, while
obtaining competitive results with other unsupervised methods.
All the developed algorithms were introduced in an outlier
detection toolbox.
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