
User’s Guide for POS3POLY—a MATLAB
Preprocessor for Positive Polynomials

Bogdan C. Şicleru1 and Bogdan Dumitrescu1,2

1Dept. of Automatic Control and Computers 2Tampere Int. Center for Signal Processing
”Politehnica” University of Bucharest Tampere University of Technology

313 Spl. Independenţei, 060042 P.O. Box 553, SF-33101
Bucharest, Romania Tampere, Finland
e-mail: bogdan.sicleru@schur.pub.ro, bogdan.dumitrescu@tut.fi

December 20, 2011

Version 3.1

This work was supported by CNCSIS-UEFISCSU, project PNII – IDEI 309/2007 and the Sectoral
Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour,
Family and Social Protection through the Financial Agreement POSDRU/6/1.5/S/16.

Contents

1 Introduction 3

2 Polynomial description 6
2.1 Coefficient description . 6

2.1.1 Scalar coefficients . 6
2.1.2 Matrix coefficients . 10
2.1.3 Causal polynomials . 11

2.2 Structure . 12

3 Demos 16

4 Examples 18
4.1 Minimum value of a polynomial . 18

4.1.1 A particular polynomial . 18
4.1.2 An arbitrary polynomial . 19
4.1.3 A multivariate polynomial . 20

4.2 Minimal value of the smallest eigenvalue 23
4.2.1 A univariate polynomial . 23
4.2.2 A multivariate polynomial . 24

4.3 Nearest autocorrelation . 26
4.4 Optimization of linear-phase FIR filters . 27

4.4.1 One-dimensional filters . 27
4.4.2 Two-dimensional filters—first variant 30
4.4.3 Two-dimensional filters—second variant 35

4.5 The stabilizability radius . 36
4.6 Optimization of approximately linear-phase FIR filters 41

4.6.1 One-dimensional filters . 41
4.6.2 Two-dimensional filters . 44

1

CONTENTS

4.7 Matrix filter design . 46

5 POS3POLY and CVX 49
5.1 Introduction . 49
5.2 Examples . 50

5.2.1 Minimum value of a multivariate trigonometric polynomial 50
5.2.2 Adjustable linear-phase FIR filters 51
5.2.3 Design of 2-D MIMO filters . 55

6 POS3POLY and SDPT3 60

A The parameterizations 61
A.1 Univariate polynomials . 61

A.1.1 Trigonometric polynomials . 61
A.1.2 Real polynomials . 62

A.2 Multivariate polynomials . 63
A.2.1 Trigonometric polynomials . 63
A.2.2 Real polynomials . 63
A.2.3 Hybrid polynomials . 64

A.3 Positivity on domains . 64
A.4 Bounded Real Lemma . 65

A.4.1 Scalar polynomial . 65
A.4.2 Matrix polynomial . 66

B List of functions 67

2

Chapter 1

Introduction

POS3POLY is a library for solving convex optimization problems whose constraints in-
volve positive polynomials (by relaxation to sum-of-squares). It assures the transparency
of the parameterization of positive polynomials, basically making the user able to solve
problems with positive polynomials without knowing what is needed for their characteriza-
tion. POS3POLY is written in MATLAB1 and uses SeDuMi [10] toolbox for optimization
over symmetric cones.

Let us see now, at a first glance, how does POS3POLY work. For this, consider a
semidefinite-quadratic-linear problem written in the equality form

min cTx
s.t. Ax = b, x ∈ K× P (1.1)

Here K is a symmetric cone which is a cartesian product of a nonnegative orthant, second
order cones and cones of semidefinite matrices and P denotes generically a cartesian
product of cones of (diverse) positive polynomials, which are defined by their coefficients.
K is the cone used by SeDuMi and other convex optimization libraries in semidefinite-
quadratic-linear programming (SQLP). This is the general optimization problem solved
by SeDuMi, which also allows the use of free (unrestricted) variables.

With POS3POLY, one can add positive polynomials as variables in problem (1.2),
hence solving

min c̃T x̃

s.t. Ãx̃ = b̃, x̃ ∈ K (1.2)

which can be solved by SeDuMi.

1MATLAB is a registered trademark of The MathWorks, Inc.

3

CHAPTER 1. INTRODUCTION

In dual or inequality form, a POS3POLY problem is

max bTy
s.t. w = c−ATy ∈ K× P

y ∈ Rν

(1.3)

Similarly with the primal form, POS3POLY transforms (1.3) into an SQLP problem.
Having built A, b, c from (1.1) or (1.3), the pos3poly function can be used to solve

the problem (1.1). A typical call for this function is

x or y = pos3poly(AsP, bsP, csP, KsP, pars);

The syntax is similar to that used by SeDuMi, namely AsP, bsP, csP are A, b, c from
(1.1), or AT , b, c from (1.3), respectively; KsP is a structure that describes the cone K×P
from (1.1) and pars (which the user is not obliged to use) is a structure that can change
the parameter settings for SeDuMi; for more information on the latter two parameters,
consult SeDuMi’s user guide and MATLAB help. Essentially, what pos3poly does is to
transform the problem (1.1) or (1.3) into the form (1.2), call SeDuMi to solve it, then
retrieve the solution. The output parameter is the solution to (1.1) or (1.3), the primal
or dual form being recognized automatically.

POS3POLY can also be used within CVX [6] for describing positive polynomial vari-
ables. The reader interested only by this mode can jump at chapter 5 after the next
chapter.

Features

The current POS3POLY version supports the following:

• sum-of-squares multivariate polynomials

• real and/or trigonometric variables

• scalar/matrix coefficients

• real/complex coefficients

• positivity intervals/domains

• Bounded Real Lemma (BRL) for polynomials

4

CHAPTER 1. INTRODUCTION

Some of these features cannot be found in other libraries. GloptiPoly [7] and SOS-
TOOLS [9] deal only with real polynomials and are oriented specifically towards solving
sum-of-squares problems. YALMIP [8] and CVX have a richer syntax and hence the possi-
bility of solving larger classes of problems. YALMIP has a module for real sum-of-squares,
while CVX offers limited support for univariate positive polynomials. As a distinctive
feature, POS3POLY allows full liberty in describing optimization problems that involve
trigonometric and hybrid positive polynomials. (Note that the ’3’ from POS3POLY comes
from the three types of polynomials that can be used: real, trigonometric and hybrid.)
Also new is the possibility of working with the BRL type of constraint.

Setup

We offer POS3POLY in a .zip archive2. To set up the MATLAB POS3POLY library
you can follow these steps:

1. Extract POS3POLY to a desired directory.

2. Enter in the main directory of the library, which is POS3POLY.

3. Run the p3p setup script to setup the POS3POLY library.

Feedback

For any bugs, requests or suggestions send us an e-mail.

2You can download POS3POLY from http://www.schur.pub.ro/pos3poly.

5

Chapter 2

Polynomial description

This chapter shows how to manipulate positive polynomial variables in POS3POLY. Fol-
lowing the SeDuMi style, a polynomial is characterized by a structure containing its type,
degree and other relevant information, and a vector of coefficients, which are variables
of the optimization problem. The description of the coefficients is presented in Section
2.1 and the structure in Section 2.2. All positive polynomials are implemented via sum-
of-squares relaxations that are described in the Appendix. Here we discuss mostly the
programming aspects.

2.1 Coefficient description

We present next the coefficients chosen to represent the positive polynomials, coefficients
which become variables in a POS3POLY problem. More precisely, we define the variables
that are present in the x term of (1.1) or w term of (1.3) for each type of polynomial. The
polynomial variables are positioned at the end of x or w, after the free, linear, quadratic
or semidefinite variables accepted by SeDuMi.

2.1.1 Scalar coefficients

• Trigonometric polynomial. Let us take a (Hermitian) trigonometric polynomial of
degree n with complex coefficients

R(z) =
n∑

k=−n

rkz
−k, r−k = r∗k, (2.1)

6

CHAPTER 2. POLYNOMIAL DESCRIPTION

k,n ∈ Zd, z ∈ Td, rk ∈ C, where T is the unit circle. (The sum is considered for
all the d-tuples such that −n ≤ k ≤ n; we denote R(ω) the frequency response
for the filter R(z), obtained by putting z = ejω.) We store all the coefficients that
belong to the halfspace Hd ∈ Zd defined by: k ∈ Hd if (kd > 0) or (kd = 0 and
(k1, . . . , kd−1) ∈ Hd−1). Therefore, POS3POLY needs the parameters

{r(0,...,0), r(1,0,...,0), . . . , r(n1,0,...,0), r(−n1,1,0,...,0), . . . , r(−n1,n2,...,nd), . . . , r(n1,n2,...,nd)}.
(2.2)

The total number of coefficients in (2.2) is

M =
1 +

∏d
i=1(2ni + 1)

2
. (2.3)

For an easier understanding of the order in which the coefficients appear in (2.2),
we consider below some examples.

Example 2.1.1. For the univariate case, d = 1, for a polynomial of degree n, the
coefficients are

{r0, r1, . . . , rn}. (2.4)

�

Example 2.1.2. We take now the case of a bivariate trigonometric polynomial of
degree (1, 2). The coefficients are those of the monomials with the following degrees:

{ (0, 0), (1, 0),
(−1, 1), (0, 1), (1, 1),
(−1, 2), (0, 2), (1, 2)}.

(2.5)

Figure 2.1 shows the order in which the coefficients appear: we go above from below
and from the left to the right. (Filled circles belong to the considered halfspace,
empty circles do not—they are in the complementary halfspace.) �

Example 2.1.3. Let us extend the previous example and consider a 3-D polynomial,
like in (2.1), with degree n = (1, 2, 1). To get the coefficients, we take the ones from
(2.5) and put 0 for the third dimension, and then, for the other coefficients we take
all the positive values for k3 for which we consider all possible pairs (k1, k2). Having

7

CHAPTER 2. POLYNOMIAL DESCRIPTION

k1

k2

10

2 3 4

5 6 7

Figure 2.1: Coefficients from a halfspace in 2-D.

this said, the corresponding triples of monomial degrees are

{ (0, 0, 0), (1, 0, 0),
(−1, 1, 0), (0, 1, 0), (1, 1, 0),
(−1, 2, 0), (0, 2, 0), (1, 2, 0),

(−1,−2, 1), (0,−2, 1), (1,−2, 1),
(−1,−1, 1), (0,−1, 1), (1,−1, 1),

(−1, 0, 1), (0, 0, 1), (1, 0, 1),
(−1, 1, 1), (0, 1, 1), (1, 1, 1),
(−1, 2, 1), (0, 2, 1), (1, 2, 1)}.

(2.6)

�

• Real Polynomial. Let P ∈ Rn[t],

P (t) =
n∑
k=0

pkt
k, (2.7)

be a real polynomial. There is no symmetry here, so we need all the coefficients of
the polynomial. The order of coefficients is

{p(0,...,0), . . . , p(n1,0,...,0), p(0,1,0,...,0), . . . , p(n1,1,0,...,0), . . . , p(0,n2,...,nd), . . . , p(n1,n2,...,nd)}.
(2.8)

8

CHAPTER 2. POLYNOMIAL DESCRIPTION

Example 2.1.4. For a bivariate real polynomial of degree (2, 2) the coefficients are

{p(0,0), p(1,0), p(2,0),
p(0,1), p(1,1), p(2,1),
p(0,2), p(1,2), p(2,2)}.

(2.9)

�

• Hybrid polynomial. Consider a hybrid polynomial

H(z1, . . . , z`, t1, . . . , tm) =
∑n1

i1=−n1
. . .
∑n`

i`=−n`

∑n`+1

i`+1=0 . . .

. . .
∑nd

id=0 h(i1,...,i`,i`+1,...,id)z
i1
1 · · · zi`` t

i`+1

1 · · · tidm,
(2.10)

with zi ∈ T, tj ∈ R and h(i1,...,i`,i`+1,...,id) ∈ C, ∀i = 1 : `, j = 1 : m (with `+m = d).
The relation

h(i1,...,i`,i`+1,...,id) = h∗(−i1,...,−i`,i`+1,...,id)
, (2.11)

ii = −ni : ni, ∀i = 1 : `, i`+j = 0 : nj, ∀j = 1 : m, implies that the polynomial
(2.10) takes real values on T` × Rm.

The coefficients we need are the ones that correspond to an `-tuple from H`, namely

{h(i1,...,i`,i`+1,...,id)}, (i1, i2, . . . , i`) ∈ H`, i`+j = 0 : nj, ∀j = 1 : m. (2.12)

The elements of the set from (2.12) are ordered as follows: for every (i`+1, . . . , id)
(d − `)-tuple, covered like in (2.8), we choose all the (i1, . . . , i`) possible `-tuples,
the order being just like in (2.2).

Example 2.1.5. We take a hybrid polynomial of degree (1, 2) with one trigonometric
variables. The considered coefficients are

{h(0,0), h(1,0),
h(0,1), h(1,1),
h(0,2), h(1,2)}.

(2.13)

�

Example 2.1.6. We consider now a hybrid polynomial of degree (1,1,1) with two
trigonometric variables. The coefficients which characterize the polynomial are

{h(0,0,0), h(1,0,0), h(−1,1,0),
h(0,1,0), h(1,1,0), h(0,0,1),
h(1,0,1), h(−1,1,1), h(0,1,1),
h(1,1,1)}.

(2.14)

�

9

CHAPTER 2. POLYNOMIAL DESCRIPTION

2.1.2 Matrix coefficients

Next, we extend the description to polynomials with matrix coefficients. The order in
which we consider the coefficients is the same as in the scalar case. The difference is that
now we have matrices, instead of scalars. So, we vectorize the matrices.

• Trigonometric polynomial. We consider a trigonometric polynomial with matrix
coefficients having the form

R(z) =
n∑

k=−n

Rkz
−k, R−k = RH

k , (2.15)

Rk ∈ Cκ×κ. Let vec() be the function that transforms a matrix into a vector by
stacking its columns. The symmetry relation from (2.15) tells that R0 is Hermitian,
hence only half of its elements are needed. Let vecs() be the function that transforms
the lower part of a Hermitian matrix into a vector, by stacking the relevant part of
its columns. Taking (2.2) into account, the coefficients of (2.15) are described by
the vector

{vecs(R(0,...,0)), vec(R(1,0,...,0)), . . . , vec(R(n1,0,...,0)),
vec(R(−n1,1,0,...,0)), . . . , vec(R(n1,n2,...,nd))}.

(2.16)

Example 2.1.7. For a polynomial with degree 2 and κ = 2 the scalar coefficients
are

{R0(1, 1), R0(2, 1), R0(2, 2),
R1(1, 1), R1(2, 1), R1(1, 2), R1(2, 2),
R2(1, 1), R2(2, 1), R2(1, 2), R2(2, 2)}.

(2.17)

�

• Real polynomial. For a real polynomial with matrix coefficients,

P (t) =
n∑
k=0

Pkt
k, Pk = PH

k , (2.18)

Pk ∈ Cκ×κ, the coefficients are described by

{vecs(P(0,...,0)), vecs(P(1,0,...,0)), . . . , vecs(P(n1,0,...,0)), . . . , vecs(P(n1,...,nd))}. (2.19)

(See (2.8).)

10

CHAPTER 2. POLYNOMIAL DESCRIPTION

Example 2.1.8. For a polynomial of degree 2 the scalar coefficients describing the
polynomial are

{P0(1, 1), P0(2, 1), P0(2, 2),
P1(1, 1), P1(2, 1), P1(2, 2),
P2(1, 1), P2(2, 1), P2(2, 2)}.

(2.20)

�

• Hybrid polynomial. Let

H(z1, . . . , z`, t1, . . . , tm) =
∑n1

i1=−n1
. . .
∑n`

i`=−n`

∑n`+1

i`+1=0 . . .

. . .
∑nd

id=0H(i1,...,i`,i`+1,...,id)z
i1
1 · · · zi`` t

i`+1

1 · · · tidm,
(2.21)

with zi ∈ T and tj ∈ R, i = 1 : `, j = 1 : m, be a multivariate hybrid polynomial
with complex matrix coefficients. The symmetry relation corresponding to (2.11) is

H(i1,...,i`,i`+1,...,id) = HH
(−i1,...,−i`,i`+1,...,id)

, (2.22)

ii = −ni : ni, ∀i = 1 : `, i`+j = 0 : nj, ∀j = 1 : m. The values that represent the
polynomial are the matrix coefficients vectorized by applying the vec() function to
all of them but H(i1,...,i`,i`+1,...,id) with i1 = . . . = i` = 0, i.e. where the degree of all
the trigonometric variables is 0, to which we apply vecs(). The order in which we
take the coefficients is the same as in (2.12).

2.1.3 Causal polynomials

We consider the (matrix) polynomial

H(q) =
n∑
k=0

Hkq
k, (2.23)

q ∈ T` × Rm, ` + m = d, Hk ∈ Cκ1×κ2 . The polynomial (2.23) is called a causal
polynomial and is described by all the elements of all the matrix coefficients, considered
in the following order:

{vec(H(0,...,0)), vec(H(1,0,...,0)), . . . , vec(H(n1,0,...,0)), . . . , vec(H(n1,...,nd))}. (2.24)

(Note that the order is the same as for the coefficients of a real polynomial. However, the
coefficient vectors are identical only in the scalar case.)

11

CHAPTER 2. POLYNOMIAL DESCRIPTION

Example 2.1.9. For a 2-D polynomial of degree n = (2, 1) the matrix coefficients are
enumerated in the order

{H(0,0),H(1,0),H(2,0),H(0,1),H(1,1),H(2,1)}. (2.25)

�

2.2 Structure

Figure 2.2 gives an overview of the fields added to the SeDuMi structure to describe the
polynomials in POS3POLY. Precisely, to characterize variables belonging to the general
cone of positive polynomials P from (1.1), we introduce two new fields in the structure
KsP, namely ptype and p.

If the optimization problem (1.1) has N positive polynomials among its variables, then
KsP.ptype and KsP.p are N -by-1 cell arrays, each cell describing a polynomial.

The field p holds the degree of a d-variate polynomial, n = (n1, n2, . . . , nd) ∈ Zd, and
the size of the κ× κ matrix polynomial coefficients. (Scalar coefficients are of size 1× 1).
Hence, KsP.p has the following structure:

[n1 n2 . . .nd κ]. (2.26)

If KsP.p has only one element, n, the polynomial is univariate with scalar coefficients and
degree n.

The field ptype gives additional information on the polynomial variables, through its
subfields. There are three types of polynomials: trigonometric, real and hybrid. In order
to specify the type of polynomial, the user must explicitly give the number of trigonometric
and/or real variables; for this, each cell of KsP.ptype has two fields: trigonometric and
real. If the polynomial does not have real variables the field real can be omitted. By
default, if none of the fields trigonometric and real appears, it is considered that the
polynomial is trigonometric; its number of variables is given by KsP.p, see (2.26).

The coefficients of the polynomials can be real or complex. By default, real coefficients
are used. To specify complex coefficients, the subfield complex coef of ptype must be
set to 1. In this case, remember also to set the field KsP.ycomplex for describing complex
equality constraints, as requested by SeDuMi.

By setting only the above fields, one describes sum-of-squares polynomials (which are
obviously globally positive). For describing polynomials that are positive on (semialge-
braic) domains, one should use the int or dom subfields of ptype. Univariate polynomials
can be positive on an interval or on a union of intervals. Table 2.1 gives the values of

12

CHAPTER 2. POLYNOMIAL DESCRIPTION

KsP

p{i} ptype{i}

[n1 . . . nd κ]

trigonometric real int

dom brl complex coef (0/1)

deg coef nc nunion hsize
?+ j q

PPPPPPPPPPPPq

?

�

?

)

PPPPPPPPPPPPq

R

	

Figure 2.2: KsP—the structure of POS3POLY.

13

CHAPTER 2. POLYNOMIAL DESCRIPTION

the field int for all possible cases for a single interval; to impose positivity on a union of
intervals, one must concatenate the intervals (into the vector int).

In the case of multivariate polynomials, positivity can be characterized on domains of
the form

D = {q | D`(q) ≥ 0, ` = 1 : L}, (2.27)

where q is a multivariate variable which can contain real and/or trigonometric variables
(taking values on the real axis or the unit circle, respectively) and D`(q) are given poly-
nomials. To describe domains like (2.27), the field dom contains three subfields: deg, coef
and nc. There are two possibilities of describing the polynomials D`(q). In the first,
the field deg is a matrix with L rows, row ` being the degree of the polynomial D`(q);
the field coef is a vector that contains the concatenated coefficients of the polynomials,
enumerated as shown in the previous section. The second possibility assumes that the
polynomials are sparse and so it is more efficient to give their nonzero coefficients. The
field nc is vector of length L, whose `-th element is the number of nonzero coefficients of
D`(q); deg is a matrix whose rows contain the degrees of the monomials with nonzero co-
efficients and coef is a vector containing these coefficients (in the same order, obviously).
If a polynomial has some symmetry, due to its nature, only the relevant coefficients are
needed; for instance, a symmetric real trigonometric polynomial is described only by its
”half”, see again the previous section.

We consider now the generalized version of a domain, which is a union of domains like
those in (2.27):

D′ =
L′⋃
`′=1

D`′ . (2.28)

The domain D′ can be described by the field nunion of dom. The field nunion is a vector
with L′ elements—the number of polynomials used to describe each domain D`′ . The
fields nc, deg, coef have the same meaning as described above, but contain information
on all the polynomials for all the domains D`′ .

POS3POLY also offers support to specify a Bounded Real Lemma (BRL) [1, Section
4.3], [2]. Let us consider a general form for the BRL,

‖H(q)‖ < |A(q)|, ∀q ∈ D′, (2.29)

where H(q) and A(q) are causal (positive orthant) polynomials of the same degree; A(q)
has scalar coefficients, but H(q) may have matrix coefficients of size κ1× κ2. By ‖ · ‖ we
denote the H∞ norm. Relation (2.29) can be written as

H(q)H(q∗)H ≺ R(q) · Iκ1 , ∀q ∈ D′, (2.30)

14

CHAPTER 2. POLYNOMIAL DESCRIPTION

Table 2.1: Positivity intervals types.

Case Domain MATLAB input Type of polynomial

1 [a, b] ∈ (−π, π) [a b] trig. pol. complex coef.
2 [a, π] ∈ (−π, π) [a pi] trig. pol. complex coef.
3 [−π, b] ∈ (−π, π) [-pi b] trig. pol. complex coef.
4 [a, b] ∈ [0, π] [a b] trig. pol. real coef.
5 [a, b] ∈ (−∞,∞) [a b] real pol.
6 [a,∞) [a Inf] real pol.
7 (−∞, b] [-Inf b] real pol.

with R(q) = A(q)A(q∗)H and ∗ denoting conjugation.
In POS3POLY, a BRL is defined by the polynomials H(q) and R(q), sharing the

same KsP description; note that they share the same degree. The polynomial R(q) is
described together with the domain D, as a scalar polynomial that is positive on D; the
order of its coefficients is as in Section 2.1.1, depending on the type of the polynomial.
The coefficients of the causal polynomial H(q) are ordered as shown in Section 2.1.3; the
size of its matrix coefficients is given in the field brl.hsize, which contains the vector
[κ1 κ2]; if κ1 = κ2, then hsize may be a scalar, equal to κ1. The presence of the field brl
indicates that we deal with a BRL and the vectors corresponding to H(q) and R(q) are
connected through the BRL relation.

15

Chapter 3

Demos

We provide some demos for the users to get started with POS3POLY. The directory of
the demos application is demos.

After setting up POS3POLY, one can use the command

>> p3p demos

to start the demos. This command will start the demos application, shown in Figure
3.1.

The POS3POLY Demos is a collection of examples, some of them being discussed in
the next chapter. The user can tweak the input parameters of the problems; to start a
demo press the Start Demo button.

We list now the names of the demos included in the demos application:

• Minimum value of a univariate trigonometric polynomial. See Section 4.1.2.

• Minimum value of a univariate real polynomial. See [1, Section 2.7].

• 1-D FIR filter design. See Section 4.4.1 .

• Minimum value of a multivariate trigonometric polynomial. See [1, Section 3.5.2].

• Minimum eigenvalue of a multivariate trigonometric polynomial. See Section 4.2.2.

• 2-D FIR filter design. See Section 4.4.2.

• Adjustable FIR filter design. See Section 5.2.2.

16

CHAPTER 3. DEMOS

Figure 3.1: POS3POLY Demos.

• Neutral systems stability. See [4] .

• 3-D FIR filter design.

17

Chapter 4

Examples

We present here some examples of working with POS3POLY. All the examples solved
here can be found in the examples directory of the POS3POLY library; the function
test p3p example can be used for testing the examples.

In describing the examples, we concentrate on building the linear system Ax = b from
(1.1) or the vector w = c−ATy from (1.3) and assume that the user knows how to use
SeDuMi.

4.1 Minimum value of a polynomial

4.1.1 A particular polynomial

Consider the (symmetric) trigonometric polynomial

R(z) = 2z2 − 3z + 6− 3z−1 + 2z−2, (4.1)

z ∈ T, for which we want to find the minimum on the unit circle, problem solved in
[1, Example 2.12]. The minimum of a polynomial R(z) can be found by solving the
optimization problem

µ∗ = max µ
s.t. R(z)− µ ≥ 0, ∀z ∈ T (4.2)

The problem (4.2) is already in the dual form, involving the positivity of a single

18

CHAPTER 4. EXAMPLES

Table 4.1: POS3POLY program for solving the problem (4.3).

1 % AsP is a 3x1 matrix multiplying mu

2 AsP = [1 0 0]’;

3 % the coefficients of R(z)

4 csP = [6 -3 2]’;

5 % the objective function is mu

6 bsP = 1;

7 % degree of polynomial and size of coefficients (1x1)

8 KsP.p{ 1 } = [2 1];

9 % univariate trigonometric polynomial

10 KsP.ptype{ 1 }.trigonometric = 1;

11 % call POS3POLY

12 mu = pos3poly(AsP, bsP, csP, KsP);

polynomial, which depends on a single variable (µ). The problem (4.2) can be written as

µ? = max µ

s.t.

 6
−3

2

−
 1

0
0

µ ∈ P (4.3)

where now P is specifically the cone of positive trigonometric polynomials of degree two.
Note that the order of the coefficients corresponds to (2.2). Identifying AT , b and c from
(1.3), the problem can be solved with the code shown in Table 4.1.

Comments. The matrix AT is introduced in the variable AsP in line 2. The column
vector c is introduced in the variable csP in line 4. The variable b is the scalar 1 and
is retained in the variable bsP in line 6. The degree of the polynomial is 2 and its
coefficients are scalars, as set in line 8. In line 10 set the polynomial to be trigonometric
and univariate. We call POS3POLY to find the minimum in line 12. �

4.1.2 An arbitrary polynomial

Let us consider the general form of the univariate trigonometric polynomial

R(z) =
n∑

k=−n

rkz
−k, r−k = r∗k (4.4)

19

CHAPTER 4. EXAMPLES

with z belonging to the unit circle.
The dual form for the minimum of an arbitrary trigonometric polynomial of degree n

is
max µ

s.t.


r0
r1
...
rn

−


1
0
...
0

µ ∈ P (4.5)

where P is the cone of trigonometric polynomials of degree n.
The function that implements the dual form for the minimum of a trigonometric

polynomial is min poly value general trig dual.

4.1.3 A multivariate polynomial

We consider a multivariate hybrid polynomial H(z, t) as in (2.10), for which we want to
find the minimum value.

Using convex optimization, the problem of finding the minimum value for the hybrid
polynomial can be cast as

µ∗ = max µ
s.t. H(z, t)− µ ≥ 0, ∀(z, t) ∈ T` × Rm (4.6)

The problem (4.6) is hard, so we relax it to

µ1 = max µ
s.t. H(z, t)− µ is sum-of-squares

(4.7)

By solving it, we obtain µ1 ≤ µ∗, but in many practical cases µ1 is equal to or a very
good approximation of µ∗.

The problem (4.7) is in the dual form and one can write it as

µ1 = max µ

s.t. h−


1
0
...
0

µ ∈ P (4.8)

20

CHAPTER 4. EXAMPLES

where P is the cone of sum-of-squares polynomials with ` trigonometric variables and m
real variables. The length of the vector h is

N =
(1 +

∏`
i=1(2ni + 1))

2

`+m∏
i=`+1

(ni + 1). (4.9)

The function that implements the problem (4.8) is listed in Table 4.2 and commented
below.

Comments. The variables n, h and ` are given as the input parameters in n, h and l.
The number of real variables m is returned in line 3. The column vectorAT is constructed
in line 5 using the function unitpol which creates the unit polynomial of given degree,
size of coefficients and number of trigonometric and real variables. b is the scalar 1 and
c is actually the vector h. The type of the polynomial is set in lines 7–10. We find the
minimum of the polynomial in line 12. �

The problem (4.8) can be tested using the command

test p3p example(53);

Example 4.1.1. Let us consider a simple example and take the hybrid polynomial of
degree n = (1, 2),

H(z, t) = 3t2 + z + z−1. (4.10)

The degrees of the nonzero coefficients are

deg = [1 0; 0 2];

and the corresponding coefficients are

coef = { 1, 3 };

We construct the vector h with

h = sppol2fvec([1 2], deg, coef, 1, 1);

Now the minimum can be retrieved with

mu = min poly value multi general hybrid([1 2], h, 1);

21

CHAPTER 4. EXAMPLES

Table 4.2: POS3POLY program for solving the problem (4.8).

1 function mu = min poly value multi general hybrid dual(n, h, l)

2
3 m = length(n) - l;

4
5 AsP = unitpol(n, 1, l, m);

6
7 KsP.ptype{ 1 }.trigonometric = l;

8 KsP.ptype{ 1 }.real = m;

9
10 KsP.p{ 1 } = [n 1];

11
12 mu = pos3poly(AsP, 1, h, KsP);

The computed value is µ1 = −2. (sppol2fvec is the function that creates the vector
that describes a polynomial using the nonzero coefficients of the polynomial.)

Alternatively the vector h can be constructed by inserting the nonzero coefficients in
the zero polynomial. We store the degree of the polynomial with

n = [1 2];

We create a zero polynomial

h = zeropol(n, 1, 1, 1);

and insert the nonzero coefficients

h(coefpos(n, [1 0], 1, 1)) = 1;

h(coefpos(n, [0 2], 1, 1)) = 3;

where zeropol is the function that creates the zero polynomial and coefpos is the func-
tion that returns the position of a coefficient in the vector that describes a polynomial.
�

22

CHAPTER 4. EXAMPLES

4.2 Minimal value of the smallest eigenvalue

4.2.1 A univariate polynomial

Let us consider a univariate real matrix polynomial

P (t) =
n∑
k=0

Pkt
k, Pk = P T

k , (4.11)

which is a particular case (d = 1) of (2.18).
The problem of finding the minimum value of the smallest eigenvalue can be written

as
µ∗ = max µ

s.t. P (t)− µIκ � 0, ∀t ∈ R (4.12)

Explicitly the problem (4.12) can be written as

µ∗ = max µ

s.t.


vecs(P0)
vecs(P1)

...
vecs(Pn)

−


vecs(Iκ)
0
...
0

µ ∈ P (4.13)

where P is the cone of univariate real matrix polynomials. The function that solves the
problem (4.13) is min matrix poly eigen general real dual, which is shown in Table
4.3 and commented below.

Comments. We put the matrix coefficients in a 3-D array. The length of the third
dimension of the array is the number (n + 1) of matrix coefficients, obtained in line 3,
which gives the degree n of the polynomial, in line 4. Next, in line 6, we retain in the
variable K the dimension of the matrix coefficients. The only variable in the problem is µ,
hence the matrix AT , denoted as AsP, is a vector. The matrix AT is constructed in line
8 using the unitpol function. The POS3POLY structure has one positive univariate real
polynomial with matrix coefficients, as stated in lines 10–11. All being set, in line 14, the
pos3poly function is used to solve the optimization problem and return the minimum
eigenvalue. Note the usage of the vecg() function in line 14, for obtaining the c term in
(1.3); check the MATLAB help for details on this function. �

Example 4.2.1. Consider the real polynomial with matrix coefficients

P (t) =

[
5 0
0 5

]
+

[
0 1
1 0

]
t+

[
2 0
0 2

]
t2. (4.14)

23

CHAPTER 4. EXAMPLES

Table 4.3: POS3POLY program for solving problem (4.13).

1 function mu = min matrix poly eigen general real dual(P)

2
3 n1 = size(P, 3);% n1 = n + 1 (degree + 1)

4 n = n1 - 1; % the degree of the polynomial

5
6 K = size(P, 1); % matrix dimension

7
8 AsP = unitpol(n, K, 0, 1); % initialize AsP

9
10 KsP.ptype{ 1 }.real = 1; % one real variable

11 KsP.p{ 1 } = [n K]; % degree & matrix dimension

12
13 % use POS3POLY

14 mu = pos3poly(AsP, 1, vecg(P, 0), KsP);

We put the three matrices in a 3-D array, in MATLAB, as follows:

P(:, :, 1) = [5 0; 0 5];

P(:, :, 2) = [0 1; 1 0];

P(:, :, 3) = [2 0; 0 2];

Now we use the function that finds µ∗:

mu = min matrix poly eigen general real dual(P);

We find that µ∗ = 4.8750. �

4.2.2 A multivariate polynomial

We discuss here the problem of computing the minimum value of the smallest eigenvalue
of a multivariate trigonometric polynomial (2.15). The problem can be expressed using

24

CHAPTER 4. EXAMPLES

positive polynomials by

µ∗ = max µ
s.t. R(z)− µIκ ≥ 0, ∀z ∈ Td (4.15)

The problem (4.15) is relaxed via sum-of-squares to

µ1 = max µ
s.t. R(z)− µIκ is sum-of-squares

(4.16)

The problem (4.16) is in dual form, hence can be written as

µ? = max µ

s.t.


vecs(R0,...,0)
vec(R1,0,...,0)

...
vec(Rn1,...,nd

)

−


vecs(Iκ)
0
...
0

µ ∈ P (4.17)

The lengths of the vectors from the problem (4.17) are equal to (M −1)κ2 + κ(κ+1)
2

, where
where M is as in (2.3).

We present in Table 4.4 an example of solving the problem (4.17) for the polynomial

R(z) = sym−1 +

[
4 0
0 4

]
+

[
1 0
0 0

]
z1 +

[
0 0
0 1

]
z2 +

[
0 −1
0 0

]
z1z2. (4.18)

Comments. The matrix polynomial has degree n = [1 1], as set in line 1. In lines
3–6 we set the degrees for the nonzero coefficients of the polynomial. The nonzero matrix
coefficients are set in lines 8–11. We set in line 13 the size of the matrix coefficients κ.
Using the sppol2fvec function, in line 14 we construct the vector that characterizes the
polynomial R, which is takes the place of the vector c. The sppol2fvec function inserts
the nonzero coefficients into their positions. Finally, in line 16 we solve the problem (4.16)
for the polynomial (4.18) and we obtain µ1 = 1. �

25

CHAPTER 4. EXAMPLES

Table 4.4: Example of solving the problem (4.16).

1 n = [1 1];

2
3 deg(1, :) = [0 0];

4 deg(2, :) = [1 0];

5 deg(3, :) = [0 1];

6 deg(4, :) = [1 1];

7
8 coef{ 1 } = [4 0; 0 4];

9 coef{ 2 } = [1 0; 0 0];

10 coef{ 3 } = [0 0; 0 1];

11 coef{ 4 } = [0 0; -1 0];

12
13 K = length(coef{ 1 });

14 r = sppol2fvec(n, deg, coef, K, 2);

15
16 mu = min matrix poly eigen multi general trig dual(n, r, K);

4.3 Nearest autocorrelation

Suppose we are given the Hermitian sequence r̂k, k = −n : n, with r̂−k = r̂∗k. We want to
find the nonnegative sequence rk that is nearest from r̂k. The problem is discussed in [1,
Sections 1.2 and 2.2].

Our problem can be expressed as

min
r

(r − r̂)HΓ(r − r̂)

s.t. R(ω) ≥ 0, ∀ω ∈ [−π, π]
(4.19)

where r = [r0 r1 . . . rn]T ∈ Cn+1 and Γ = diag(1, 2, . . . , 2) (this value stands for the
Euclidian norm; other positive definite matrices Γ could be used for other quadratic
norms).

26

CHAPTER 4. EXAMPLES

Taking into account that

(r − r̂)HΓ(r − r̂) = ||Γ 1
2 (r − r̂)||2 (4.20)

the problem (4.19) is equivalent to

min
α,y,r

α

s.t. ||y|| ≤ α
R(z) ≥ 0, ∀z ∈ T

(4.21)

where y = Γ
1
2 (r − r̂). The first constraint of (4.21) is that α and y belong to a second-

order cone (SOC).

Knowing that −Γ−
1
2y + r = r̂ the matrix equality that describes the equality con-

straints of the problem, i.e. the system Ax = b from (1.1), is

[
0 −Γ−

1
2 In+1

]  α
y
r

 = r̂. (4.22)

Hence, the problem (4.19) can be written in the primal form as

min
α,y,r

α

s.t. (4.22)
||y|| ≤ α
R(z) ≥ 0, ∀z ∈ T

(4.23)

The function that solves the problem (4.23) is nearest autocorrelation.

4.4 Optimization of linear-phase FIR filters

4.4.1 One-dimensional filters

We tackle now the problem of designing linear-phase FIR filters of even order ñ = 2n,
using optimization, problem which can be found in [1, Section 5.1.1]. We optimize only
the magnitude, therefore we can work with zero-phase filters

H(z) =
n∑

k=−n

hkz
−k, h−k = hk. (4.24)

27

CHAPTER 4. EXAMPLES

A peak constrained least-squares (PCLS) problem can be formulated as

min
H∈Rn[z]

Es

s.t. 1 + γp −H(ω) ≥ 0, ∀ω ∈ [0, ωp]
H(ω)− 1 + γp ≥ 0, ∀ω ∈ [0, ωp]
γs −H(ω) ≥ 0,∀ω ∈ [ωs, π]
H(ω) + γs ≥ 0,∀ω ∈ [ωs, π]

(4.25)

where Es is the stopband energy of the FIR filter and γp, γs are the passband and stopband
given error bounds, respectively. The filter is lowpass, ωp and ωs being the edges of the
passband and stopband, respectively. We have now a problem with polynomials that are
nonnegative on given intervals.

Let us see the expression of the stopband energy. Considering h = [h0 h1 . . . hn]T we
have

Es = hT C̃h, with C̃ = P TCP � 0 (4.26)

where

P =

 0 Jn
1 0
0 In

 (4.27)

and C = Toeplitz(c0, c1, . . . , cñ) � 0 with

ck =

{
1− ωs/π, if k = 0;

−sin kωs
kπ

, if k > 0.
(4.28)

(Jn is the counteridentity matrix of size n× n.)
The problem (4.25) is equivalent to

min
ε,h

ε

s.t. ||C̃ 1
2h|| ≤ ε

1 + γp −H(ω) ≥ 0,∀ω ∈ [0, ωp]
H(ω)− 1 + γp ≥ 0,∀ω ∈ [0, ωp]
γs −H(ω) ≥ 0,∀ω ∈ [ωs, π]
H(ω) + γs ≥ 0,∀ω ∈ [ωs, π]

(4.29)

28

CHAPTER 4. EXAMPLES

The following expression characterizes the inequality constraints of the problem (4.29):



0

0

1 + γp
0

−1 + γp
0

γs
0

γs
0



−



−1 0

0 −C̃ 1
2

0 In+1

0 −In+1

0 In+1

0 −In+1



[
ε
h

]
. (4.30)

The function lin phase fir dual can be used to design linear-phase FIR filters (see
the code for the usage of the field int for describing polynomials that are positive on an
interval). For instance, choosing ñ = 50, ωp = 0.2π, ωs = 0.25π, γp = 0.1, γs = 0.0158,
one should enter the following command in MATLAB:

th = lin phase fir dual(25, 0.2 * pi, 0.25 * pi, 0.1, 0.0158);

(The value given above to γs corresponds to a stopband attenuation of 36 dB.)
To plot the frequency response of the filter (shown in Figure 4.1), one can use the

command

fvtool([flipud(th(2 : end)); th]);

29

CHAPTER 4. EXAMPLES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Normalized frequency (ω/π)

M
ag

ni
tu

de
 (

dB
)

Figure 4.1: Frequency response of linear-phase FIR filter.

4.4.2 Two-dimensional filters—first variant

We consider here the minimax optimization of 2-D linear-phase FIR filters with diamond
shape passband. The problem can be stated as [1, Section 5.2.2]

min
γs,H

γs

s.t. 1 + γp −H(ω) ≥ 0, ∀ω
−1 + γp +H(ω) ≥ 0, ∀ω ∈ Dp
γs −H(ω) ≥ 0, ∀ω ∈ Ds
γs +H(ω) ≥ 0, ∀ω ∈ Ds

(4.31)

where H(ω) is a bivariate filter, d = 2 in (2.1), γp and γs are passband and stopband
error bound, respectively, andDp, Ds are the passband and stopband domain, respectively.
A diamond shape is obtained by adopting the following definitions (only the constants
0.1 and 0.7 have to be changed below in order to change the size of the passband and
stopband):

Dp = {ω1,2 | cos (ω1 + ω2)− 0.1 ≥ 0, cos (ω1 − ω2)− 0.1 ≥ 0, cosω1 + cosω2 ≥ 0}
Ds = Ds1 ∪ Ds2 ∪ Ds3

(4.32)

30

CHAPTER 4. EXAMPLES

where
Ds1 = {ω1,2 | − cos (ω1 + ω2)− 0.7 ≥ 0}
Ds2 = {ω1,2 | − cos (ω1 − ω2)− 0.7 ≥ 0}
Ds3 = {ω1,2 | − cosω1 − cosω2 ≥ 0} .

(4.33)

The relations (4.32) and (4.33) can be written equivalently as

Dp = {z1,2 | Dp1(z1, z2) ≥ 0, Dp2(z1, z2) ≥ 0, Dp3(z1, z2) ≥ 0}
Ds1 = {z1,2 | Ds1(z1, z2) ≥ 0}
Ds2 = {z1,2 | Ds2(z1, z2) ≥ 0}
Ds3 = {z1,2 | Ds3(z1, z2) ≥ 0}

(4.34)

where
Dp1(z1, z2) = (z1z2 + z−11 z−12)/2− 0.1
Dp2(z1, z2) = (z−11 z2 + z1z

−1
2)/2− 0.1

Dp3(z1, z2) = (z1 + z−11)/2 + (z2 + z−12)/2
Ds1(z1, z2) = −(z1z2 + z−11 z−12)/2− 0.7
Ds2(z1, z2) = −(z−11 z2 + z1z

−1
2)/2− 0.7

Ds3(z1, z2) = −(z1 + z−11)/2− (z2 + z−12)/2.

(4.35)

The problem (4.31) can be written as

min
γs,H

γs

1 + γp −H(z) is sum-of-squares
−1 + γp +H(z) ≥ 0, ∀ω ∈ Dp
γs −H(z) ≥ 0, ∀ω ∈ Ds1
γs −H(z) ≥ 0, ∀ω ∈ Ds2
γs −H(z) ≥ 0, ∀ω ∈ Ds3
γs +H(z) ≥ 0, ∀ω ∈ Ds1
γs +H(z) ≥ 0, ∀ω ∈ Ds2
γs +H(z) ≥ 0, ∀ω ∈ Ds3

(4.36)

The problem (4.36) is difficult to solve, reason for which we relax it via Theorem A.3.1

31

CHAPTER 4. EXAMPLES

(see the Appendix), using sum-of-squares. Hence, denoting

S0(z) = 1 + γp −H(z)
S1(z) = −1 + γp +H(z)
S2(z) = γs −H(z)
S3(z) = γs −H(z)
S4(z) = γs −H(z)
S5(z) = γs +H(z)
S6(z) = γs +H(z)
S7(z) = γs +H(z)

(4.37)

the problem (4.36) is relaxed to

min
γs,H,si,i=0:7

γs

S0(z) = S0(z)
S1(z) = S1(z) +Dp1(z)S2(z) +Dp2(z)S3(z) +Dp3(z)S4(z)
S2(z) = S5 +Ds1(z)S6(z)
S3(z) = S7 +Ds2(z)S8(z)
S4(z) = S9 +Ds3(z)S10(z)
S5(z) = S11 +Ds1(z)S12(z)
S6(z) = S13 +Ds2(z)S14(z)
S7(z) = S15 +Ds3(z)S16(z)

(4.38)

where Si(z), i = 0 : 16, are sum-of-squares. However, the user does not need to implement
problem (4.38) explicitly, but only describe the following problem

min
γs,H,si,i=0:7

γs

S0(z) is sum-of-squares
S1(ω) ≥ 0, ∀ω ∈ Dp
S2(ω) ≥ 0, ∀ω ∈ Ds1
S3(ω) ≥ 0, ∀ω ∈ Ds2
S4(ω) ≥ 0, ∀ω ∈ Ds3
S5(ω) ≥ 0, ∀ω ∈ Ds1
S6(ω) ≥ 0, ∀ω ∈ Ds2
S7(ω) ≥ 0, ∀ω ∈ Ds3

(4.39)

POS3POLY takes care of the sum-of-squares relaxation.

32

CHAPTER 4. EXAMPLES

The expression c−ATy from (1.3) is



1 + γp
0

−1 + γp
0

0

0

0

0

0

0



−



0 IM

0 −IM

−1
0 IM

−1
0 IM

−1
0 IM

−1
0 −IM

−1
0 −IM

−1
0 −IM



[
γs
h

]
(4.40)

where M is defined as in (2.3).
Let us discuss now how to describe positivity on a domain. We consider two ap-

proaches: the first in which the polynomials which describe the positivity domain are
given by all their coefficients and the second in which the polynomials are described only
by their nonzero coefficients.

Full polynomial description

We consider here the description of the positivity for the polynomial S1(z) using all the
coefficients of the polynomials. (See also the function lin phase fir2d v2 dual.m, which
uses the full description of the polynomials which describe the positivity.)

The polynomial S1(z) is positive on Dp—which is defined by the positivity of three
polynomials, as (4.34) shows. We use the fields deg and coef to set the positivity domain.

We set the degrees for the polynomials of the positivity domain with

KsP.ptype{ 2 }.dom.deg = [1 1; ...

33

CHAPTER 4. EXAMPLES

1 1; ...

1 1];

All the coefficients of the polynomials are set using

KsP.ptype{ 2 }.dom.coef = [-0.1 0 0 0 0.5 -0.1 0 0.5 0 0 0 0.5 0 0.5 0];

Sparse polynomial description

We take now the case where we describe the polynomials used for positivity as sparse
polynomials. We exemplify on the polynomial S1(z). (See also the function
lin phase fir2d dual.m, which considers the sparse approach.) To describe the positiv-
ity domains we use the fields nc, deg and coef.

Each of the three polynomials which describe the positivity for the polynomial S1(z)
has two nonzero coefficients; this is imposed in the KsP structure by

KsP.ptype{ 2 }.dom.nc = [2 2 2];

The degrees of the monomials corresponding to the nonzero coefficients are described by
the POS3POLY code

KsP.ptype{ 2 }.dom.deg = [0 0; ...

1 1; ...

0 0; ...

-1 1; ...

1 0; ...

0 1];

Finally, the associated coefficients are

KsP.ptype{ 2 }.dom.coef = [-0.1 0.5 -0.1 0.5 0.5 0.5];

A filter H(z) like the one in (4.38) can be designed using the test p3p example.m:

test_p3p_example(56);

Figure 4.2 shows a 2-D FIR filter designed using the problem (4.38).

34

CHAPTER 4. EXAMPLES

Figure 4.2: Frequency response of linear-phase 2-D FIR filter for n = (7, 7), γp = 0.1.

4.4.3 Two-dimensional filters—second variant

A shorter program is obtained by substituting the positivity of several equal polynomials
on multiple domains with the positivity of a single polynomial on a union of domains. To
do so, one must use the fields nunion, nc, deg and coef.

Instead of (4.36) we consider the equivalent problem

min
γs,H,si,i=0:3

γs

S0(z) is sum-of-squares
S1(ω) ≥ 0, ∀ω ∈ Dp
S2(ω) ≥ 0, ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3
S3(ω) ≥ 0, ∀ω ∈ Ds1 ∪ Ds2 ∪ Ds3

(4.41)

where
S0(z) = 1 + γp −H(z)
S1(z) = −1 + γp +H(z)
S2(z) = γs −H(z)
S3(z) = γs +H(z).

(4.42)

35

CHAPTER 4. EXAMPLES

The expression c−ATy that characterizes the problem (4.41) is

1 + γp
0

−1 + γp
0

0

0


−



0 IM

0 −IM

−1
0 IM

−1
0 −IM



[
γs
h

]
(4.43)

with M as in (2.3).
The program that solves the problem (4.41), in dual form, is in Table 4.5 and is

discussed in the next paragraph.

Comments. We initialize the variables AsP, bsP, csP in lines 5–7. (The function
lenpol returns the number of coefficients used to characterize a polynomial.) We set the
objective function in line 8. In lines 9–10 we set the nonzero elements of the c vector
from (1.3). The lines 11–16 set the matrix AT . The numbers of variables for the four
polynomials are set in lines 17–18. The positivity domain for the second polynomial is
set in lines 19–21. The positivity domains for the last two polynomials are set in lines
22–29. Remark the usage of the field nunion: each domain used in the union is defined
by one polynomial. The degrees of the polynomials are set in lines 30–31. We call the
POS3POLY library in line 32. Finally, in line 33 we obtain the filter. �

To design a 2-D filter using the program from Table 4.5 one can use the following
commands:

n = [7 7];

h = lin phase fir2d v3 dual(n, 0.1);

freqz2d(half2all2d(h, n));

4.5 The stabilizability radius

We present now a method for computing the stabilizability radius, which is discussed in [3].
Considering a pair of matrices (A,B), the distance to unstabilizability is approximated

36

CHAPTER 4. EXAMPLES

Table 4.5: POS3POLY program for solving problem (4.41).

1 function [h] = lin phase fir2d v3 dual(n, gp)

2 N = lenpol(n); % number of coefficients

3 nConstr = 4 * N; nVar = N + 1;

4 I = speye(N);

5 AsP = sparse(nConstr, nVar); % initialize POS3POLY

6 bsP = sparse(1, nVar); % variables

7 csP = sparse(nConstr, 1);

8 bsP(1) = -1; % maximize -gs

9 csP(1) = 1 + gp; % free terms for the

10 csP(1 + N) = -1 + gp; % polynomial constraints

11 AsP(1: N, 2 : N + 1) = I; % 1 + gp - H(w) >= 0

12 AsP(N + 1 : 2 * N, 2 : N + 1) = -I; % -1 + gp + H(w) >= 0, Dp

13 AsP(2 * N + 1 , 1) = -1; % gs - H(w) >= 0, Ds1, Ds2, Ds3

14 AsP(2 * N + 1 : 3 * N, 2 : N + 1) = I;

15 AsP(3 * N + 1 , 1) = -1; % gs + H(w) >= 0, Ds1, Ds2, Ds3

16 AsP(3 * N + 1 : 4 * N, 2 : N + 1) = -I;

17 KsP.ptype{ 1 }.trigonometric = 2; KsP.ptype{ 2 }.trigonometric = 2;

18 KsP.ptype{ 3 }.trigonometric = 2; KsP.ptype{ 4 }.trigonometric = 2;

19 KsP.ptype{ 2 }.dom.nc = [2 2 2];

20 KsP.ptype{ 2 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1;];

21 KsP.ptype{ 2 }.dom.coef = [-0.1 0.5 -0.1 0.5 0.5 0.5];

22 KsP.ptype{ 3 }.dom.nunion = [1 1 1];

23 KsP.ptype{ 3 }.dom.nc = [2 2 2];

24 KsP.ptype{ 3 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1];

25 KsP.ptype{ 3 }.dom.coef = [-0.7 -0.5 -0.7 -0.5 -0.5 -0.5];

26 KsP.ptype{ 4 }.dom.nunion = [1 1 1];

27 KsP.ptype{ 4 }.dom.nc = [2 2 2];

28 KsP.ptype{ 4 }.dom.deg = [0 0; 1 1; 0 0; -1 1; 1 0; 0 1];

29 KsP.ptype{ 4 }.dom.coef = [-0.7 -0.5 -0.7 -0.5 -0.5 -0.5];

30 KsP.p{ 1 } = [n 1]; KsP.p{ 2 } = [n 1];

31 KsP.p{ 3 } = [n 1]; KsP.p{ 4 } = [n 1];

32 [y] = pos3poly(AsP, bsP, csP, KsP); % use POS3POLY

33 h = y(2 : N + 1); % "half" of the coefficients of the filter

37

CHAPTER 4. EXAMPLES

by solving the problem

max τ
s.t. P (t1, t2)− τI = S0(t1, t2) + t1S1(t1, t2) + (r2 − t21 − t22)S2

(4.44)

where r is an upper bound depending on A (and is constant), Si, i = 0 : 2, are sum-of-
squares and

P (t1, t2) = t21I + t22I − t1(A+AH)− jt2(AH −A) +AAH +BBH . (4.45)

The stabilizability radius is
√
τ .

We denote S(t1, t2) = P (t1, t2)−τI, of degree (n1, n2), and remark that the constraint
of (4.44) is the sum-of-squares relaxation of the positivity of S(t1, t2) on a domain defined
by the positivity of the polynomials

D1(t1, t2) = t1,
D2(t1, t2) = r2 − t21 − t22.

(4.46)

The expression c−ATy for the dual form in POS3POLY is

(0, 0)
(1, 0)
(2, 0)
(0, 1)
(1, 1)
(2, 1)
(0, 2)
(1, 2)
(2, 2)



vecs(AAH +BBH)
vecs(−(A+AH))

vecs(I)
vecs(−j(AH −A))

0
0

vecs(I)
0
0


−



vecs(I)
0
0
0
0
0
0
0
0


τ, (4.47)

where the length of the vectors from (4.47) is N = (n1 + 1)(n2 + 1)κ(κ + 1)/2, Si,j,
i = 0 : n1, j = 0 : n2, are the coefficients of the polynomial S(t1, t2) and the matrix A
is of size κ× κ. In the left most part of (4.47) we show the degrees corresponding to the
matrix coefficients.

We present in Table 4.6 the program dist2unstab r dual.m which solves the prob-
lem (4.44) in the dual form. Next, we make some remarks on how we have implemented
problem program from Table 4.6.

Comments. Let n (a vector of two elements) be the degree n = (n1, n2) of the poly-
nomial P (t1, t2). We put the degrees of the nonzero coefficients in the variable deg—line

38

CHAPTER 4. EXAMPLES

9; we set the variable coef with those coefficients in lines 11–12. The variable τ is maxi-
mized, hence csP is set the scalar 1 in line 13. We initialize AsP in line 15. Next, in line
16 we use the sppol2fvec function to form the vector c. We begin defining the structure
of the POS3POLY problem in line 17 where we define one bivariate real polynomial. The
degree of the polynomial is n and the size of the coefficients is K, facts declared in line 18.
Three lines, 21, 23, 25, describe the positivity domain of the polynomial. In the line 23
appear the degrees of the polynomials (4.46) defining the positivity domain, while in line
25, their coefficients. The first polynomial has one coefficient and the second has three
coefficients, as set in line 21. In line 26 we declare that the coefficients are complex and
we treat the constraints as equalities between complex numbers in line 27. We call the
POS3POLY library in line 28. The stabilizability radius is obtained in line 29. �

For the pair of matrices

A =

 1 1 1
0.1 3 5
0 −1 −1

 , B =

 1
0.1
0

 , (4.48)

the dist2unstab r.m function returns the value 0.0392404 for the stabilizability radius.

39

CHAPTER 4. EXAMPLES

Table 4.6: POS3POLY program for solving problem (4.44).

1 function sigma = dist2unstab r dual(A, B, n)

2 K = size(A, 1); % size of the matrix A

3 hK = sumn(K); % nr. elem. half matrix

4 % ident. mat.; nr. of coefs.; j

5 I = speye(K); N = prod(n + 1);

6 r = sqrt(max(abs(eig((A + A’) / 2))) ^ 2 + ...

7 max(abs(eig((A - A’) / (2 * 1i)))) ^ 2);

8 % degrees for nonzero coefs. of P(t1,t2)

9 deg = [2 0; 0 2; 1 0; 0 1; 0 0];

10 % nonzero coefficiets of the polynomial P(t1,t2)

11 coef{ 1 } = I; coef{ 2 } = I; coef{ 3 } = -(A + A’);

12 coef{ 4 } = -1i * (A’ - A); coef{ 5 } = A * A’ + B * B’;

13 bsP = 1; % build ’bsP’

14 nConstr = N * hK; % nr. of POS3POLY constraints

15 AsP = unitpol(n, K, 0, 2);

16 csP = sppol2fvec(1, 5, n, deg, coef, K, 0, 1);

17 KsP.ptype{ 1 }.real = 2; % 2-D polynomial P(t1,t2)

18 KsP.p{ 1 } = [n K]; % degree and size of the coefficients

19 % positivity domain (pos. dom.);

20 % number of coefficients

21 KsP.ptype{ 1 }.dom.nc = [1 3];

22 % degrees of the coefficients

23 KsP.ptype{ 1 }.dom.deg = [1 0; 0 0; 2 0; 0 2];

24 % coefficients from the pos. dom.

25 KsP.ptype{ 1 }.dom.coef = [1, r ^ 2, -1, -1];

26 KsP.ptype{ 1 }.complex coef = 1; % complex coefficients

27 KsP.ycomplex = 1 : nConstr; % complex constraints

28 [y] = pos3poly(AsP, bsP, csP, KsP); % call POS3POLY

29 sigma = sqrt(y); % distance to unstabilizability

40

CHAPTER 4. EXAMPLES

4.6 Optimization of approximately linear-phase FIR

filters

We show in this section the implementation of two BRL type problems using POS3POLY.

4.6.1 One-dimensional filters

One-dimensional approximately linear-phase lowpass filters can be designed solving the
optimization problem [1, Section 5.1.3]

min
H∈Rn+[z]

Es

s.t. |H(ω)− e−jτω| ≤ γp, ω ∈ [0, ωp]
|H(ω)| ≤ γs, ω ∈ [ωs, π]

(4.49)

where H(z) is a causal filter of degree n, Es is the stopband energy and the integer τ
is the desired group delay. Each of the constraints of (4.49) is a BRL. To describe a
BRL POS3POLY uses a variable formed by a vector describing the filter and a positive
polynomial to describe the polynomial R(q) from the right hand side of (2.30).

Although the implementation in POS3POLY would be much simpler in the dual form,
we discuss the primal form. The problem (4.49) is equivalent to the POS3POLY problem

min
h,ε,y,h0,s0,h1,s1

ε

s.t. y = C1/2h
|H0(ω)|2 ≤ S0(ω), ∀ω ∈ [0, ωp]
H0(z) = H(z)− z−τ
S0(z) = γ2p
|H(ω)|2 ≤ S1(ω), ∀ω ∈ [ωs, π]
H1(z) = H(z)
S1(z) = γ2s
‖y‖ ≤ ε
S0(z) ≥ 0, ∀ω ∈ [0, ωp]
S1(z) ≥ 0, ∀ω ∈ [ωs, π]

(4.50)

where H0(z) and H1(z) are univariate causal polynomials and h0, h1 are the vectors of
their coefficients, respectively and S0(z) and S1(z) are univariate positive polynomials
and s0, s1 are the vectors of their coefficients, respectively.

41

CHAPTER 4. EXAMPLES

The characteristic system for the primal form of the problem (4.50) is


−C1/2 0 I 0 0 0 0
I 0 0 −I 0 0 0
I 0 0 0 0 −I 0
0 0 0 0 I 0 0
0 0 0 0 0 0 I





h
ε
y
h0

s0
h1

s1


=



0
0
1
0
0
γ2p
0
γ2s
0


.

(n+ τ + 2)

(4.51)

The first block line describes the connection between y and h. The second block line
describes the connection between the filters H0(z) and H(z). The third line describes
the dependence of the filter H1(z) on the filter H(z). The last two block lines set the
constraints for the polynomials S0(z) and S1(z). In the right most part of (4.51) we have
emphasized the place for the nonzero coefficient of the ”polynomial” z−τ in the free term.

The program that solves the problem (4.50) is listed in the Table 4.7 and discussed in
the next paragraph.

Comments. We consider in line 1, as input arguments, the MATLAB variables n, wp,
ws, gp, gs, tau for n, ωp, ωs, γp, γs, τ , respectively. We initialize the matrix A, free term
and the objective function in lines 4–5. The line 11–12 set the constraint between y and
h. Lines 13-15 set the constraints between H0(z) and H(z), while lines 16–17 set the
constraints between H1(z) and H(z). Lines 18–18 set the constraints for the polynomial
S0(z), while lines 20–21 set the constraints for the polynomial S1(z). The filter H(z) is
set as a free variable in line 22. y and ε belong to a SOC, as stated in line 23. The
lines 24–25 declare the positive polynomials S0(z) and S1(z) and the lines 26–27 their
positivity intervals, respectively. The degree of these polynomials is n and they have
scalar coefficients, as set in line 28–29. The lines 30 and 31 describe the size of the matrix
coefficients of H(ω). The POS3POLY library is called in line 32 and the filter is extracted
from the solution in line 33. �

42

CHAPTER 4. EXAMPLES

Table 4.7: POS3POLY program for solving the problem (4.50).

1 function [h] = approx lin phase fir(n, wp, ws, gp, gs, tau)

2 % nr of coefs.; nr of constr.; nr of variables; identity matrix

3 n1 = n + 1; nConstr = 5 * n1; nVar = 1 + n1 * 6; I = speye(n1);

4 AsP = sparse(nConstr, nVar); bsP = sparse(nConstr, 1);

5 csP = sparse(1, nVar); csP(n1 + 1) = 1;

6 c = (1 - ws / pi) * eye(n1, 1); % the vector c

7 for i = 2 : n1

8 c(i) = -sin((i - 1) * ws) / ((i - 1) * pi);

9 end

10 C = toeplitz(c); C12 = real(sqrtm(C));

11 AsP(2 * n1 + 1 : 3 * n1, n1 + 2 : 2 * n1 + 1) = I; % y=C12*h

12 AsP(2 * n1 + 1 : 3 * n1, 1 : n1) = -C12;

13 AsP(n1 + 1 : 2 * n1, 1 : n1) = I; % h, h0

14 AsP(n1 + 1 : 2 * n1, 2 * n1 + 2 : 3 * n1 + 1) = -I;

15 bsP(n1 + tau + 1) = 1;

16 AsP(2 * n1 + 1 : 3 * n1, 1 : n1) = I; % h, h1

17 AsP(2 * n1 + 1 : 3 * n1, 4 * n1 + 2 : 5 * n1 + 1) = -I;

18 AsP(3 * n1 + 1 : 4 * n1, 3 * n1 + 2 : 4 * n1 + 1) = I; % s0

19 bsP(3 * n1 + 1) = gp ^ 2;

20 AsP(4 * n1 + 1 : 5 * n1, 5 * n1 + 2 : 6 * n1 + 1) = I; % s1

21 bsP(4 * n1 + 1) = gs ^ 2;

22 KsP.f = n1; % the coefs. of the filter are unrestricted

23 KsP.q = n1 + 1; % SOC: ||y|| <= eps

24 KsP.ptype{ 1 }.trigonometric = 1; % the polynomial variables

25 KsP.ptype{ 2 }.trigonometric = 1;

26 KsP.ptype{ 1 }.int = [0 wp]; % positivity intervals

27 KsP.ptype{ 2 }.int = [ws pi];

28 KsP.p{ 1 } = [n 1]; % degree for the polynomials

29 KsP.p{ 2 } = [n 1]; % and scalar coefficients

30 KsP.ptype{ 1 }.brl.hsize = 1;

31 KsP.ptype{ 2 }.brl.hsize = 1;

32 [x] = pos3poly(AsP, bsP, csP, KsP); % use POS3POLY

33 h = x(1 : n1); % coefficients of the filter

43

CHAPTER 4. EXAMPLES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−50

−40

−30

−20

−10

0

Normalized Frequency (ω/π)

M
ag

ni
tu

de
 (

dB
)

(a) Frequency response.

0 0.05 0.1 0.15 0.2
19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

Normalized Frequency (ω/π)

G
ro

up
 d

el
ay

 (
sa

m
pl

es
)

(b) Group delay.

Figure 4.3: Frequency response and group delay of approximately linear-phase filter for
n = 50, ωp = 0.2π, ωs = 0.25π, γp = 0.1, γs = 0.0158, τ = 22.

Figure 4.3a shows a filter designed using problem (4.50) and Figure 4.3b shows its
group delay. (To design a filter using problem (4.50) one can use the function
approx lin phase fir.m.)

4.6.2 Two-dimensional filters

In this section we present the minimax optimization of 2-D approximately linear-phase
filters. The problem is discussed in [1, Section 5.2.3] and can be cast as

min
γs,H

γs

s.t. |H(ω)−G(ω)| ≤ γp, ∀ω ∈ Dp
|H(ω)| ≤ γs, ∀ω ∈ Ds

(4.52)

where H(ω) is a bivariate causal filter and G(ω) = e−jτω. The design data are: the delay
τ ∈ N2, the passband error bound γp and the diamond-shaped passband and stopband
Dp, Ds given by (4.32). The stopband error γs is minimized.

The problem (4.52) is in dual form and the expression c−ATy is
g

γ2p
0
0

0

−


0 IN

0 0M×N

0 −IN
−1
0 0M×N


[
γ2s
h

]
, (4.53)

44

CHAPTER 4. EXAMPLES

Figure 4.4: Frequency response of approximately linear-phase 2-D FIR filter for n =
(10, 10), γp = 0.1, τ = (4, 4).

where M is computed as in (2.3) and N = (n1 + 1)(n2 + 1). The scalar 1 from the right
hand side of (4.53) corresponds to z−τ11 z−τ22 . The first two block lines describe the first
BRL constraint and the last two describe the second BRL constraint: the first and the
third block lines describe the filters, while the second and fourth describe the positive
polynomial.

To design a filter using the description from (4.53) one can use the command

[h] = app lp fir2d([10 10], 0.1, [4 4])

Then, the frequency response of the filter h can be plotted using the command

freqz2d(mat(h));

Figure 4.4 illustrates an example for the filter H(z).

45

CHAPTER 4. EXAMPLES

4.7 Matrix filter design

This section presents the minimax optimization of matrix FIR filters [2]. Matrix filters
process blocks of data x ∈ C using the linear transformation

y = Ax (4.54)

where A can be real or complex; we choose A to be complex and of size N ×N .
Denoting ψ(z) = [1 z . . . zN−1]T , the matrix filter has the form

H(z) = Aψ(z−1) =
N−1∑
k=0

akz
−k (4.55)

where ak, k = 0 : N − 1, are the columns of the matrix A.
To design a bandpass matrix filter with passband [0, ωp], stopbands [ωs1, π] and [−π, ωs2]

and equal maximum errors in the passband and stopband, we solve the problem

min γs
s.t. γp = γs

‖H(ω)−ψ(e−jω)‖ ≤ γp, ∀ω ∈ [0, ωp]
‖H(ω)‖ ≤ γs, ∀ω ∈ [ωs1 , π] ∪ [−π, ωs2]

(4.56)

The POS3POLY expression that characterizes the dual form for the problem (4.56) is
vec(I)

0
0
0

−


0 I
−1
0 0
0 I
−1
0 0


[
γs
h

]
. (4.57)

Comments. The Table 4.8 present the MATLAB program for the problem (4.57). The
program has input parameters N , ωp, ωs1 , ωs2 . The first two block lines of AsP are set
in lines 7–10. Next, we set the constraints for the filter in the BRL in lines 11–13. The
problem has γs and H as free variables, which is set in line 14. We have two univariate
trigonometric variables—lines 15–16. For these polynomials we set positivity intervals in
lines 17–18. The degree for both of the polynomials is N − 1 and the coefficients are
scalars as set in line 19. The BRL settings are done in the lines 20–23. (Note the field
hsize for each polynomial.) The polynomials have complex coefficients (line 24) , the
constraints are complex and the filter is also complex (line 25). We call the POS3POLY
library in line 26 and return the filter in line 27. �

46

CHAPTER 4. EXAMPLES

−1 −0.5 0 0.5 1
−25

−20

−15

−10

−5

0

Normalized frequency (ω/π)

‖A
ψ
(e

−
j
ω
)‖
/
√
N

(d
B
)

Power response of the matrix filter

Figure 4.5: Power response of matrix FIR filter for ωp = 0.2π, ωs1 = 0.3π, ωs2 = −0.1π.

One can design the matrix filter and plot the power response using the command

test p3p example(27);

The power response is shown in Figure 4.5.

47

CHAPTER 4. EXAMPLES

Table 4.8: POS3POLY program for solving the problem (4.57).

1 function H = mat filt(N, wp, ws1, ws2)

2 N2 = N ^ 2; nConstr = 2 * N + 2 * N2; nVar = 1 + N2;

3 AsP = sparse(nConstr, nVar);

4 bsP = -speye(1, nVar);

5 csP = sparse(nConstr, 1);

6 I = speye(N); I2 = speye(N2);

7 AsP(1 : N2, 2 : N2 + 1) = I2; % H0

8 csP(1 : N2) = vec(I);

9 AsP(N2 + 1, 1) = -1; % S0

10 AsP(N2 + N + 1 : 2 * N2 + N, 2 : N2 + 1) = I2; % H1

11 AsP(2 * N2 + N + 1, 1) = -1; % S1

12 KsP.ptype{ 1 }.trigonometric = 1; % the polynomial variables

13 KsP.ptype{ 2 }.trigonometric = 1;

14 KsP.ptype{ 1 }.int = [0 wp]; % positivity domains

15 KsP.ptype{ 2 }.int = [ws1 pi -pi ws2];

16 KsP.p{ 1 } = [N-1 1]; KsP.p{ 2 } = [N-1 1];

17 KsP.ptype{ 1 }.brl.hsize = [1 N];

18 KsP.ptype{ 2 }.brl.hsize = [1 N];

19 KsP.ptype{ 1 }.complex coef = 1; KsP.ptype 2 .complex coef = 1;

20 KsP.ycomplex = 1 : nConstr; KsP.xcomplex = 2 : 1 + N2;

21 [y] = pos3poly(AsP, bsP, csP, KsP); % use POS3POLY

22 H = y(2 : N2 + 1); % coefficients of the filter

48

Chapter 5

POS3POLY and CVX

5.1 Introduction

We discuss here the support of POS3POLY for CVX [6]. Taking advantage of the possi-
bility to define convex sets in CVX, POS3POLY allows with a single function the creation
of all types of positive (sum-of-squares) polynomial or BRL variables.

The command to create a positive (sum-of-squares) polynomial is

R == sos pol(p, ptype);

where p and ptype are structures for one polynomial, as presented in section 2.2. R

is a vector variable, containing the coefficients of the polynomial described by p and
ptype, ordered as described in Section 2.1.

When one wants to create a BRL, then the command is

HR == sos pol(p, ptype);

where p and ptype are, as above, the structures that describe the polynomial. The
variable HR is formed by [H; R] where H and R denote H and R from (2.30), respec-
tively. So, the function describes a single vector variable, obtained by the concatenation
of the vectors H and R.

49

CHAPTER 5. POS3POLY AND CVX

5.2 Examples

This section presents examples of problems solved using POS3POLY and CVX. The main
tool is the function sos pol for creating sum-of-squares polynomials. All the examples
using CVX are in the examples|cvx directory.

5.2.1 Minimum value of a multivariate trigonometric polyno-
mial

We present here the computation of the minimum value of a multivariate trigonometric
polynomial. For the polynomial R(z) from (2.1) the problem can be cast as a POS3POLY
problem in the form

µ∗ = max
µ

µ

s.t. R(z)− µ ≥ 0, ∀z ∈ Td
(5.1)

The problem is relaxed to

µ1 = max
µ

µ

s.t. R(z)− µ is sum-of-squares
(5.2)

The function that solves the problem (5.2) is listed in Table 5.1.

Comments. The input parameters of the function describe the polynomial by the
vector r of its coefficients and its degree n. The variable µ is denoted by m in line 4. We
maximize m in line 5. The polynomial R(z) − µ is enforced to be sum-of-squares in line
8. The command cvx end runs CVX and solves the problem. �

50

CHAPTER 5. POS3POLY AND CVX

Table 5.1: POS3POLY–CVX program for solving the problem (5.2).

1 function [m] = min poly value multi general trig cvx(n, r)

2
3 cvx begin

4 variable m;

5 maximize m;

6 subject to

7 % SOS polynomial

8 r - m * unitpol(n) == sos pol([n 1]);

9 cvx end

We consider the bivariate polynomial

R(z) = sym−1 + 38 + 18z1 + 4z21 + z−21 z2 + 2z−11 z2 + z2 − 8z1z2 − 5z21z2 (5.3)

where sym−1 is the symmetric part of the polynomial. The MATLAB code to find the
minimum is

r = [38 18 4 1 2 1 -8 -5]’;

n = [2 1];

m = min poly value multi general trig cvx(n, r);

The minimum is µ1 = 1.8214. (Note that the order of the coefficients in r corresponds to
the order chosen in (2.2).)

5.2.2 Adjustable linear-phase FIR filters

We discuss now the design of adjustable linear-phase FIR filters [5] with transfer function

H(z, p) =
K∑
k=0

(p− p0)KHk(z), (5.4)

where Hk(z), k = 0 : K, are FIR filters, p0 ∈ R is a constant and p ∈ R is a variable. The
implementation uses the Farrow structure shown in Figure 5.1.

51

CHAPTER 5. POS3POLY AND CVX

HK(z) H2(z) H1(z) H0(z)

!! !! !!aa aa aa
p−p0 p−p0 p−p0d d d? ? ? -- -

· · ·
????

- - - - -

x[n]

y[n]

Figure 5.1: Farrow structure for the implementation of adjustable filters.

The filters Hk(z) are zero-phase

Hk(z) =
N∑

i=−N

hk,iz
−i, hk,i = hk,−i (5.5)

and thus the transfer function (5.4) is a hybrid filter. We denote t = p − p0 and H(t, z)
the polynomial (5.4) transformed with this substitution.

The parameter p lies in an interval [p`, pu] and p0 is a constant that can have any
value; we fix p0 to (p` + pu)/2. Given a passband error bound γp, we aim to design an
adjustable filter by solving the problem

min γs
s.t. 1− γp ≤ H(ejω, p) ≤ 1 + γp, ∀ cosω ∈ [p+ ∆, 1]

−γs ≤ H(ejω, p) ≤ γs, ∀ cosω ∈ [−1, p−∆]
(5.6)

where the parameter ∆ determines the width of the transition band.
We transform the problem (5.6) into

min γs
s.t. H(z, t) + γp − 1 ≥ 0, ∀(t, z) ∈ Dp

γp + 1−H(z, t) ≥ 0, ∀(t, z) ∈ Dp
H(z, t) + γs ≥ 0, ∀(t, z) ∈ Ds
γs −H(z, t) ≥ 0, ∀(t, z) ∈ Ds

(5.7)

with domains
Dp = {(z, t) ∈ R× T | Dp`(z, t) ≥ 0, ` = 1 : 2}
Ds = {(z, t) ∈ R× T | Ds`(z, t) ≥ 0, ` = 1 : 2}. (5.8)

Considering that cosω = (z + z−1)/2, the polynomials from (5.8) are defined by

Dp1(z, t) = 1
2
(z + z−1)− t− p0 −∆

Ds1(z, t) = −1
2
(z + z−1) + t+ p0 −∆

Dp2(z, t) = Ds2(z, t) = (t+ p0 − p`)(pu − t− p0)
(5.9)

52

CHAPTER 5. POS3POLY AND CVX

0 0.5 1 1.5 2 2.5 3
−120

−100

−80

−60

−40

−20

0

20

Frequency (ω/π)

M
ag

ni
tu

de
 (

dB
)

Figure 5.2: Adjustable filters for N = 13, K = 6, γp = 0.01, ∆ = 0.25, p` = 0, pu = 0.56.

The expression c−ATy from (1.3) which describes the POS3POLY problem (5.7) is
1−γp
0

1+γp
0

0
0

−


0 −I
0 I
−1
0 −I
−1
0 I


[
γs
h

]
. (5.10)

The program solving the problem (5.7) is in Table 5.2.

Comments. Each polynomial has one trigonometric variable and one real variable, as
set using the trigonometric and real fields. The settings for the polynomials are done
in lines 9–40. The CVX mode starts in line 42. We declare gs, the filter H and the four
polynomial variables in line 44; note that each domain (5.8) is defined by two polynomials,
each having three nonzero coefficients (symmetry taken into account). The lines 46–49
are the four constraints of the problem, the block lines from (5.10). �

The problem listed in Table 5.2 can be executed using the command

>> test p3p example(35);

Figure 5.2 shows the adjustable filters obtained.

53

CHAPTER 5. POS3POLY AND CVX

Table 5.2: POS3POLY–CVX program for solving the problem (5.7).

1 function H = adj fir cvx(n, gp, D, pl, pu, p0)

2
3 % nr. of coefs. in halfspace for

4 % a hybrid pol. with one trig. var.

5 N = lenpol(n, 1, 1, 1);

6
7 Ipol = eye(N, 1);

8
9 % 1st SOS polynomial S0

10 ptype{ 1 }.trigonometric = 1;

11 ptype{ 1 }.real = 1;

12 p{ 1 } = [n 1];

13 ptype{ 1 }.dom.nc = [3 3];

14 ptype{ 1 }.dom.deg = [0 0; 1 0; 0 1; 0 0; 0 1; 0 2];

15 ptype{ 1 }.dom.coef = [-D+p0 -0.5 1 (pu-p0)*(p0-pl) ...

16 (pu+pl-2*p0) -1];

17 % 2nd SOS polynomial S1

18 ptype{ 2 }.trigonometric = 1;

19 ptype{ 2 }.real = 1;

20 p{ 2 } = [n 1];

21 ptype{ 2 }.dom.nc = [3 3];

22 ptype{ 2 }.dom.deg = [0 0; 1 0; 0 1; 0 0; 0 1; 0 2];

23 ptype{ 2 }.dom.coef = [-D+p0 -0.5 1 (pu-p0)*(p0-pl) ...

24 (pu+pl-2*p0) -1];

25 % 3rd SOS polynomial S2

26 ptype{ 3 }.trigonometric = 1;

27 ptype{ 3 }.real = 1;

28 p{ 3 } = [n 1];

29 ptype{ 3 }.dom.nc = [3 3];

30 ptype{ 3 }.dom.deg = [0 0; 1 0; 0 1; 0 0; 0 1; 0 2];

31 ptype{ 3 }.dom.coef = [-D-p0 0.5 -1 (pu-p0)*(p0-pl) ...

32 (pu+pl-2*p0) -1];

33 % 4th SOS polynomial S3

34 ptype{ 4 }.trigonometric = 1;

Continued on next page. . .

54

CHAPTER 5. POS3POLY AND CVX

Table 5.2 – Continued

35 ptype{ 4 }.real = 1;

36 p{ 4 } = [n 1];

37 ptype{ 4 }.dom.nc = [3 3];

38 ptype{ 4 }.dom.deg = [0 0; 1 0; 0 1; 0 0; 0 1; 0 2];

39 ptype{ 4 }.dom.coef = [-D-p0 0.5 -1 (pu-p0)*(p0-pl) ...

40 (pu+pl-2*p0) -1];

41
42 cvx begin

43 cvx solver sedumi;

44 variables gs H(N);

45 minimize gs;

46 H + gs * Ipol == sos pol(p{ 1 }, ptype{ 1 });

47 gs * Ipol - H == sos pol(p{ 2 }, ptype{ 2 });

48 H - (1 - gp) * Ipol == sos pol(p{ 3 }, ptype{ 3 });

49 (1 + gp) * Ipol - H == sos pol(p{ 4 }, ptype{ 4 });

50 cvx end

5.2.3 Design of 2-D MIMO filters

We discuss here the design of 2-D MIMO FIR filters [2]. Given a desired response D(z),
a passband error bound γp, a passband edge ωp and a stopband edge ωs (we presume that
the passband and the stopband are delimited by squares), find the optimal filter

min γs
s.t. σmax(H(ejω)−D(ejω)) ≤ γp, ∀|ωi| ≤ ωp, i = 1 : 2

σmax(H(ejω)) ≤ γs, ∃i ∈ 1 : 2, |ωi| ≥ ωs

(5.11)

where σmax(·) is the maximum singular value function and H(z) is a 2 × 2 causal poly-
nomial matrix of degree n = (n1, n2).

The problem is equivalent to

min γs
s.t. σmax(H(ejω)−D(ejω)) ≤ γp, ∀z ∈ Dp

σmax(H(ejω)) ≤ γs, ∀z ∈ Ds1 ∪ Ds2
(5.12)

55

CHAPTER 5. POS3POLY AND CVX

where

Dp(z) = {z ∈ T2 | D`(z) = z` + z−1` − 2 cosωp ≥ 0, ` = 1 : 2}
Ds1(z) = {z ∈ T2 | 2 cosωs − z1 − z−11 ≥ 0}
Ds2(z) = {z ∈ T2 | 2 cosωs − z2 − z−12 ≥ 0}

(5.13)

The problem (5.12) has two BRL constraints.
The characteristic expression for the dual form of the problem (5.12) is

...
vec(Di,j)

...
γ2p
0

0

0


−



0 IN

0 0

0 −IN

−1
0 −IN



[
γs
h

]
(5.14)

where i = 0 : n1, j = 0 : n2 and N = 4(n1 + 1)(n2 + 1).
The MATLAB program which solves (5.12) is listed in Table 5.3 and commented

below.

Comments. We denote by n the degree of the polynomial H(z), by gp the passband
error γp and by K the number of inputs and outputs of the system H(z) which in this case
is [2 2]. degD holds in its lines the nonzero degrees of the polynomial D(z) and in coefD

the nonzero coefficients. wp and ws are the passband and stopband edges, respectively.
The number of scalar variables for a filter is set in line 6. We initialize the matrix D for
the polynomial D(z) in line 8. Next, we set two bivariate polynomial variables in lines
11–12. In lines 13–22 we set the positivity domains. For each polynomial we set the
degrees for the positivity polynomials, their coefficients and the number of coefficients for
each polynomials from the positivity domain. For the second polynomial we also specify
the number of polynomials for the domains from the union. In lines 23–26 we activate the
BRL for each polynomial by setting the field hsize. The degree of the polynomials and
the size of the coefficients are set in line 29. The vector D which denotes the polynomial
D(z) is constructed in lines 30–34. We start writing for CVX in line 36. We declare the
stopband error bound gs as variable, the polynomial H and the BRL variables HR1, HR2,

56

CHAPTER 5. POS3POLY AND CVX

Figure 5.3: Frequency response of H1,1(z) for n = (4, 4), γp = 0.1, ωp = 0.4π, ωs = 0.9π,
D(z) = z−21 z−22 I2.

HR3. We use the sos pol function to create the variables for the polynomials in lines
41–42. The problem minimizes gs. The lines 44–45 represent the second and the fourth
block constraints from (5.14). The lines 46–47 represent the constraints applied on the
filter H(z) from the BRL. The variables returned for the BRLs by the sos pol function
must be equal to bounded systems. The lines represent the first and the third block lines
from (5.14). The command cvx end solves the problem (5.12). �

Figure 5.3 represents the transfer function from the first input to the first output. To
plot the FIR filter after we have solved the problem, we have used the command

freqz2d(mat(H(1 : 4 : prod(n + 1) * prod(K))));

57

CHAPTER 5. POS3POLY AND CVX

Table 5.3: POS3POLY–CVX program for solving the problem (5.12).

1 function H = mimo fir2d cvx(n, gp, K, degD, coefD, wp, ws)

2
3 % number of n-tuples;

4 M = lenpol(n);

5 % number of scalar filter coefs.

6 N = lencpol(n);

7
8 D = sparse(N, 1);

9
10 % two polynomial variables

11 ptype{ 1 }.trigonometric = 2;

12 ptype{ 2 }.trigonometric = 2;

13 % positivity domains

14 % Dp

15 ptype{ 1 }.dom.nc = [2 2];

16 ptype{ 1 }.dom.deg = [0 0; 1 0; 0 0; 0 1];

17 ptype{ 1 }.dom.coef = [-2 * cos(wp) 1 -2 * cos(wp) 1];

18 % Ds1 U Ds2

19 ptype{ 2 }.dom.nunion = [1 1];

20 ptype{ 2 }.dom.nc = [2 2];

21 ptype{ 2 }.dom.deg = [0 0; 1 0; 0 0; 0 1];

22 ptype{ 2 }.dom.coef = [2 * cos(ws) -1 2 * cos(ws) -1];

23 % 1st BRL

24 ptype{ 1 }.brl.hsize = [K1 K2];

25 % 2nd BRL

26 ptype{ 2 }.brl.hsize = [K1 K2];

27
28 % degrees of polynomials ’n’, and coefficients are scalars

29 p{ 1 } = [n 1]; p{ 2 } = [n 1];

30 % introduce D(z)

31 for i = 1 : size(degD, 1)

32 nrdeg = degD(i, 2) * (n(1) + 1) + degD(i, 1) + 1;

33 D((nrdeg-1)*prod(K)+1 : nrdeg*prod(K)) = vec(coefD{i});
34 end

Continued on next page. . .

58

CHAPTER 5. POS3POLY AND CVX

Table 5.3 – Continued

35
36 cvx begin

37 variable gs;

38 variable H(N);

39 variable HR1(M + N);

40 variable HR2(M + N);

41 HR1 == sos pol(p{ 1 }, ptype{ 1 });

42 HR2 == sos pol(p{ 2 }, ptype{ 2 });

43 minimize gs;

44 gp ^ 2 * unitpol(n) == HR1(N + 1 : end);

45 gs * unitpol(n) == HR2(N + 1 : end);

46 HR1(1 : MK1K2) == H - D;

47 HR2(1 : MK1K2) == H;

48 cvx end

59

Chapter 6

POS3POLY and SDPT3

POS3POLY can also work with SDPT3 [11]. In order to use SDPT3 one must use
the POS3POLY command sedumi data which takes the same input parameters as the
pos3poly command:

[As, bs, cs, Ks, D, IB, iE, bO, iB, Bl, Blc, f, fO, nU] = sedumi data(AsP,

bsP, csP, KsP);

Next, we use three SDPT3 calls. First, we convert the SeDuMi data to SDPT3 data
with

[blk, AA, CC, bb, perm] = read sedumi(As, bs, cs ,Ks);

Then, we solve the optimization problem using the SDPT3 library

[obj, X, y, Z] = sdpt3(blk, AA, CC, bb);

One must convert the SDPT3 solution to the SeDuMi solution using

[xx, yy, zz] = SDPT3soln SEDUMIsoln(blk, X, y, Z, perm);

Finally, the POS3POLY solution is extracted using

[xy] = sdm2p3p(xx, D, IB, iE, bO, iB, Bl, Blc, f, fO, nU);

60

Appendix A

The parameterizations

We present in this chapter the parameterizations used for the sum-of-squares polynomials.

A.1 Univariate polynomials

A.1.1 Trigonometric polynomials

Scalar polynomials

Considering d = 1 in (2.1) we obtain

R(z) =
n∑

k=−n

rkz
−k, r−k = r∗k, (A.1)

where k, n ∈ Z, z ∈ T and rk ∈ C.

Theorem A.1.1. The polynomial R(z) is positive if and only if there exists a positive
semidefinite matrix Q ∈ CN×N such that

rk = Tr[Θk ·Q], k = 0 : n, (A.2)

where Θk is the elementary Toeplitz matrix with ones on the k-th diagonal and zeros
elsewhere and N = n + 1. The matrix Q is called a Gram matrix associated with the
polynomial (A.1). (TrM stands for the trace operator applied on the matrix M .) �

61

APPENDIX A. THE PARAMETERIZATIONS

Matrix polynomials

We take d = 1 in (2.15) and obtain

R(z) =
n∑

k=−n

Rkz
−k, R−k = RH

k , (A.3)

where k, n ∈ Z, z ∈ T and Rk ∈ Cκ×κ.

Theorem A.1.2. The polynomial R(z) is positive if and only if there exists a positive
semidefinite matrix Q ∈ CN×N such that

Rk(i, j) = Tr[Θk ⊗Ej,i ·Q], k = 0 : n, i, j = 1 : κ, (A.4)

where Ej,i is the matrix with one in the (j, i) position and zeros elsewhere and N =
(n+ 1)κ. �

A.1.2 Real polynomials

Scalar polynomials

Taking d = 1 in (2.7) leads to

P (t) =
n∑
k=0

pkt
k, (A.5)

where k ∈ N, t ∈ R, pk ∈ R.

Theorem A.1.3. The polynomial P (t) is positive if and only if there exists a positive
semidefinite matrix Q ∈ CN×N such that

pk = Tr[Υk ·Q], k = 0 : n, (A.6)

where Υk is the elementary Hankel matrix with ones on the k-th antidiagonal and zeros
elsewhere and N = n/2 + 1. �

Matrix polynomials

Let d = 1 in (2.18) which leads to

P (t) =
n∑
k=0

Pkt
k, Pk = PH

k , (A.7)

where k ∈ N, t ∈ R, Pk ∈ Cκ×κ.

62

APPENDIX A. THE PARAMETERIZATIONS

Theorem A.1.4. The polynomial P (t) is positive if and only if there exists a positive
semidefinite matrix Q ∈ CN×N such that

Pk(i, j) = Tr[Υk ⊗Ej,i ·Q], k = 0 : n, i, j = 1 : κ, (A.8)

where Ej,i is the matrix with one in the (j, i) position and zeros elsewhere and N =
(n/2 + 1)κ. �

A.2 Multivariate polynomials

A.2.1 Trigonometric polynomials

Scalar polynomials

The polynomial from (2.1) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

rk = Tr[Θkd ⊗ · · · ⊗Θk1 ·Q], k ∈ Hd, (A.9)

where N =
∏d

i=1(ni + 1). �

Matrix polynomials

The polynomial from (2.15) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

Rk(i, j) = Tr[Θkd ⊗ · · · ⊗Θk1 ⊗Ej,i ·Q], k ∈ Hd, i, j = 1 : κ, (A.10)

where N = (
∏d

i=1(ni + 1))κ. �

A.2.2 Real polynomials

Scalar polynomials

The polynomial from (2.7) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

pk = Tr[Υkd ⊗ · · · ⊗Υk1 ·Q], k = 0 : n (A.11)

where N =
∏d

i=1(ni/2 + 1). �

63

APPENDIX A. THE PARAMETERIZATIONS

Matrix polynomials

The polynomial from (2.18) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

Pk(i, j) = Tr[Υkd ⊗ · · · ⊗Υk1 ⊗Ej,i ·Q], k = 0 : n, i, j = 1 : κ, (A.12)

where N = (
∏d

i=1(ni/2 + 1))κ. �

A.2.3 Hybrid polynomials

Scalar polynomials

The polynomial from (2.10) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

hk = Tr[Υk`+m
⊗ · · · ⊗Υk`+1

⊗Θk` ⊗ ·s⊗Θk1 ·Q], (A.13)

where (k1, . . . , k`) ∈ H`, (h`+1, . . . , h`+m) = 0 : (n`+1, . . . , n`+m), N = 0.5(1 +
∏`

i=1(2ni +

1))
∏`+m

i=`+1(ni + 1). �

Matrix polynomials

The polynomial from (2.21) is sum-of-squares if and only if there exists a positive semidef-
inite matrix Q ∈ CN×N such that

Hk(i, j) = Tr[Υk`+m
⊗ · · · ⊗Υk`+1

⊗Θk` ⊗ · · · ⊗Θk1 ⊗Ei,j ·Q], i, j = 1 : κ (A.14)

where (k1, . . . , k`) ∈ H`, (h`+1, . . . , h`+m) = 0 : (n`+1, . . . , n`+m), N = 0.5(1 +
∏`

i=1(2ni +

1))
∏`+m

i=`+1(ni + 1)κ. �

A.3 Positivity on domains

We consider here the case of positivity on domains for trigonometric polynomials. For
real and hybrid polynomials the formulation is similar.

Let us consider a frequency domain

D = {ω ∈ [−π, π]d | D`(ω) ≥ 0, ` = 1 : L}. (A.15)

64

APPENDIX A. THE PARAMETERIZATIONS

Theorem A.3.1. The polynomial R ∈ Cn[z] is sum-of-squares on D if and only if there
exists sum-of-squares polynomials S`, ` = 0 : L, such that

R(z) = S0(z) +
L∑
`=1

D`(z)S`(z). (A.16)

The relation (A.16) is equivalent to

rk = Tr[Θkd ⊗ . . .⊗Θk1 ·Q0 +
L∑
`=1

Ψ`k ·Q`] (A.17)

where
Ψ`k =

∑
i+l=k

(d`)iΘl, (A.18)

with Θl = Θld ⊗ . . .⊗Θl1. We denote (d`)i the coefficients of the polynomial D`(z). �

A.4 Bounded Real Lemma

We consider in this sections the parameterizations for the BRL in the case of trigonometric
polynomials. The cases of real and hybrid polynomials are similar.

A.4.1 Scalar polynomial

Theorem A.4.1. Let H(z) and A(z) be two positive orthant polynomials and D a fre-
quency domain defined as in (A.15). Denote

R(z) = A(z)A∗(z−1). (A.19)

The inequality
|H(ω)| ≤ |A(ω)|, ∀ω ∈ D (A.20)

is satisfied, if and only if there exists matrices Q` � 0, ` = 0 : L, such that the relations
(A.17) and [

Q0 h
hH 1

]
� 0 (A.21)

hold, where h is the vector of coefficients of the filter H(z). �

65

APPENDIX A. THE PARAMETERIZATIONS

A.4.2 Matrix polynomial

Theorem A.4.2. Let H(z) and A(z) be two matrix positive orthant polynomials, H(z)
with matrix coefficients of size κ1× κ2 and A(z) with scalar coefficients. We define R(z)
as in (A.19). The inequality

‖H(ω)‖ ≤ |A(ω)|, ω ∈ D, (A.22)

holds true if and only if the matrices Q`, ` = 0 : L exist such that

rkδi−j = Tr[Θkd ⊗ . . .⊗Θk1 ⊗Ej,i ·Q0 +
L∑
`=1

Ψ`k ⊗Ej,i ·Q`], i, j = 1 : κ1, (A.23)

and [
Q0 H

H
H
Iκ2

]
� 0, (A.24)

where H is a matrix of size Nκ1 × κ2, with N =
∏d

i=1(ni + 1), obtained by stacking the
coefficients of the polynomial H(z) and δ` is the Dirac function. �

Example A.4.1. For a 2-D polynomial with n = (2, 1) we have

H = [HT
0,0 H

T
1,0 H

T
2,0 H

T
0,1 H

T
1,1 H

T
2,1]T . (A.25)

�

66

Appendix B

List of functions

We list here some of the functions of the POS3POLY library.

cf.m conditional function

coefpos.m get position of coefficient

degmon.m compute degrees of the monomials of a polynomial

eqm.m test matrix equality

findvm.m find vector in matrix

geqm.m test matrix inequality

iseven.m test for even number

isinhalf.m check if degree is in the right halfspace

iszero.m test if matrix is zero

lenpol.m compute number of scalar coefficients for polynomials

lencpol.m compute number of scalar coefficients for causal polynomials

leqm.m test matrix inequality

mat.m matrix from vector

mextend.m matrix extend

67

APPENDIX B. LIST OF FUNCTIONS

polconv2d.m 2-D causal polynomial convolution

pos3poly.m call the POS3POLY library

prod poly.m product of two polynomials

sedumi data.m retrieve the data passed to SeDuMi

sdm2p3p.m convert SDPT3 solution to POS3POLY solution

sos pol.m create a sum-of-squares polynomial for CVX

spcausal2fvec.m create a coefficient vector from a sparse description of a causal poly-
nomial

sppol2fvec.m create a coefficient vector from a sparse description of a polynomial

sppols2fvec.m create a coefficient vector from several sparse descriptions of polynomials

sum poly.m sum of two polynomials

test p3p example.m run examples of the POS3POLY library

unitpol.m unit polynomial

unitcpol.m unit causal polynomial

vec.m vectorize a matrix

vecs.m vectorize a Hermitian matrix

vecs2.m vectorize a Hermitian matrix, for CVX variables

zeropol.m zero polynomial

zerocpol.m zero causal polynomial

68

Bibliography

[1] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applica-
tions. Springer-Verlag, 2007.

[2] B. Dumitrescu. Bouded real lemma for multivariate trigonometric matrix polynomials
and fir filter design applications. In Proc. European Sign. Proc. Conf. (EUSIPCO),
pages 676–680, Glasgow, Scotland, August 2009.

[3] B. Dumitrescu, B.C. Şicleru, and R. Ştefan. Computing the controllability radius: a
semi-definite programming approach. IET Control Theory & Applications, 3(6):654–
660, 2009.

[4] B. Dumitrescu, B.C. Şicleru, and R. Ştefan. Delay-dependent stability analysis of
neutral systems using positive polynomials optimization. In Proc. Control Applica-
tions of Optimization (CAO), Jyväskylä, Finland, May 2009.

[5] B. Dumitrescu, Bogdan C. Şicleru, and R. Ştefan. Positive hybrid real-trigonometric
polynomials and applications to adjustable filter design and absolute stability anal-
ysis. Circ. Syst. and Sign. Proc., 29(5):881–899, 2010.

[6] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 1.21. http://cvxr.com/cvx, May 2010.

[7] D. Henrion and J.B. Lasserre. GloptiPoly: Global optimization over polynomials
with MATLAB and SeDuMi. ACM Trans. Math. Soft., 29(2):165–194, June 2003.

[8] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[9] S. Prajna and A. Papachristodoulou. SOSTOOLS: Sum of squares optimization
toolbox for Matlab, 2004.

69

BIBLIOGRAPHY

[10] J.F. Sturm. Using SeDuMi, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11–12:625–653, 1999.

[11] K.C. Toh, M.J. Todd, and R.H. Tütüncü. SDPT3—a matlab software package for
semidefinite programming. Opt. Meth. Soft., 11(1):545–581, 1999.

70

